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Frozen Orbits Construction for a Lunar Solar Sail

Elamira Hend Khattab, Mohamed Radwan, Walid  Ali Rahoma†

Department of Astronomy and Space Science, Faculty of Science, Cairo University, Cairo 12613, Egypt

Frozen orbit is an attractive option for orbital design owing to its characteristics (its argument of pericenter and eccentricity 
are kept constant on an average). Solar sails are attractive solutions for massive and expensive missions. However, the solar 
radiation pressure effect represents an additional force on the solar sail that may greatly affect its orbital behavior in the long 
run. Thus, this force must be included as a perturbation force in the dynamical model for more accuracy. This study shows the 
calculations of initial conditions for a lunar solar sail frozen orbit. The disturbing function of the problem was developed to 
include the lunar gravitational field that is characterized by uneven mass distribution, third body perturbation, and the effect of 
solar radiation. An averaging technique was used to reduce the dynamical problem to a long period system. Lagrange planetary 
equations were utilized to formulate the rate of change of the argument of pericenter and eccentricity. Using the reduced 
system, frozen orbits for the Moon sail orbiter were constructed. The resulting frozen orbits are shown by two 3Dsurface (semi-
major, eccentricity, inclination) figures. To simplify the analysis, we showed inclination–eccentricity contours for different 
values of semi-major axis, argument of pericenter, and values of sail lightness number.
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1. INTRODUCTION 

The mission design to place a satellite in an orbit around 

a celestial body like the Moon is a complex task; hence, it is 

time-consuming to choose the perfect orbital initial condi-

tions that would meet mission objectives. 

Recently, frozen orbits drew particular attention owing 

to their space-applications like topographic mapping and 

planetary environment researches and observations. In 

such orbits, the argument of pericenter and eccentricity 

are enforced to be stationary by choosing suitable initial 

conditions, even if the influences of different perturbations 

are considered.

The history of research on frozen orbits began several 

years ago, as detailed in a study by Coffey et al. (1994), 

where many researchers introduced useful contributions. 

Smith (1986) used Delaunay variables in the canonical 

formulations of partial derivatives to predict the long-term 

evolution of eccentricity and the argument of pericenter. 

Rosborough & Ocampo (1991) utilized Lagrange planetary 

equations to derive frozen orbits of the Earth using the 

gravity mode. Lara et al. (1995) used angular momentum 

polar component to numerically outline families of frozen 

orbits of the Earth. The same technique was applied to lunar 

frozen orbits by Elipe & Lara (2003). Aorpimai & Palmer 

(2003) used epicycle description to compute the Earth’s 

frozen orbits up to arbitrary zonal harmonics. Zhigang et al. 

(2014) determined the initial conditions that minimize the 

variation of the orbital plane for nearly circular orbits with 

a semi-major axis 3–10 times the Earth’s radius. Santos et 

al. (2013) searched for frozen orbits through some missions 

around planetary satellites, like Jupiter’s moons Europa and 

Icy, and studied their stability. Masoud et al. (2018, 2019) 

discussed six control strategies to construct artificial frozen 

orbits and sun-synchronous orbits around the Earth.

Furthermore, solar sail is a modern propulsion method 

in which the radiation pressure of sunlight is used to 

propel a spacecraft. It presents long operating lifetimes in 

addition to low cost of operation. Although its force is low-

thrust compared to that of electric engines, it is a perfect 
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continuous force that could be collected over time to be 

sufficiently large to be considered as a propulsion force. The 

solar sailing force exerted on an 800 × 800 m2 mirror at one 

astronomical unit (AU) is about 5 N (Jerome 1992). 

Solar sails are applicable to many space missions spread 

over the entire solar system. Solar sails could reach up to 0.25 

AU or even closer to the sun to offer solar observation pay-

loads. They could travel between inner and outer planets. 

They could also be placed at a stationary point relative to ei-

ther the Earth or the sun to warn about solar storms (Zubrin 

et al. 2011). The orbits of Earth’s satellites can be modified 

by solar sailing. Also, solar sail is suitable for pole sitter and 

deorbiting (McInnes 2004; Ceriotti & McInnes 2011; Gong et 

al. 2011; Charlotte et al. 2012).

Wie (2004a, b); Wie & Murphy (2007) studied the solar 

sail attitude dynamics and how to control it. Cui et al. (2008) 

derived the dynamical model of multi-body solar sails with 

control boom. Regarding a low Earth orbit, Polites et al. 

(2008) presented a numerical simulation on attitude control 

for a solar sail by using magnetic torquers in addition to 

small reaction wheels. Liu et al. (2014a, b) presented vibra-

tion equations for a solar sail with large flexible established 

attitude dynamics with control boom, control vanes, and 

sliding masses.

Carvalho (2016) found the frozen orbits for an artificial 

Mercuian solar sail considering Mercury’s non-sphericity 

caused by the zonal terms J2, and J3, solar radiation pressure  

(SRP), and the sun as a third-body.

Carvalho et al. (2012a,b, 2013) in consequent studies 

found the frozen orbits around Jupiter’s moon (Europa) by, 

considering Jupiter as a third-body using Lie-transform as 

an average method within Hamiltonian framework. Abd 

El-Salam (2013) considered the Poynting–Robertson drag 

effects of solar sail. In heliocentric orbit, he obtained con-

straints for solar sail optimal dynamics.

This investigation aimed to determine the frozen orbits 

around the Moon using continuous acceleration by solar 

propulsion considering the uneven mass distribution and  

third body attraction, with the solar sailing as a perturbation 

force.

The gravitational potential of the Moon is quite different  

from that of the Earth, so that the zonal harmonics up to J5, 

first sectorial harmonic C22 and first tesseral harmonic C31 

are of the same order (Rahoma 2014; Rahoma & Abd El-

Salam 2014).

2. DYNAMICAL MODEL

The present dynamical system comprised three bodies: 

the central body— the Moon, the solar sail spacecraft, and 

the third disturbing body (TB), with masses m0, m, and m’, 

respectively. The reference frame Oxyz originated at the 

Moon and the xy-plane coincided with the lunar equator. 

The x-axis was along the intersection point between the 

lunar equator and the TB orbital plane. To define the sail 

orbits around the Moon, we used the classical Keplerian 

elements: a, orbital semi-major axis; e, eccentricity; i, incli-

nation; ω, argument of pericenter; Ω, longitude of ascending 

node; and f, the true anomaly. Further, n refers to the mean 

motion, where n2a3 = Gm0 with G as the gravitational con-

stant. The TB, m’, is assumed to move in an elliptic inclined 

orbit around the central body with the orbital elements (a’, 

e’, i’, ω’, Ω’), and its mean motion n’ is given by n’2a’3 = G(m0 + 

m’), with the reference frame definition, Ω’ = 0. 

Considering the perturbing accelerations, the solar sail 

equation of motion around the Moon is described by

 3M b SRPr r r r= + +
   

     (1)

where Mr  is the gravitational acceleration induced by the 

lunar gravity field, 3br  is the acceleration due to the pres-

ence of TB, and SRPr  is the acceleration due to SRP.  

2.1 Lunar Gravity Potential

The lunar gravity can be written as gradient of the poten-

tial UM:

 
2 0
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where the quantities Cnm and Snm are the lunar harmonics 

coefficients. μ and RM are gravitational parameter and lunar 

equatorial radius, respectively. The quantities (r, λ, φ) are the 

spherical coordinates of the sail-craft. Further, ( )sinm
np ϕ  

are the associated Legendre polynomials. 

The Moon’s gravity field is rather asymmetric, unlike 

that of the Earth, where the sectorial coefficient P22 and the 

tesseral coefficient P31 are larger than the zonal coefficients 

P2, P3, P4 and P5; thus, P22  and P31 cannot be ignored.

The following equations were derived based on the 

assumptions of Giacaglia et al. (1970):
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where we consider only the harmonics coefficients J2, J3, 

J4, J5, C22 and C31 (Rahoma 2014; Rahoma & Abd El-Salam 

2014).

Also, 𝜁 = cosω cosΩ - cosi sinω sinΩ, χ = -sinω cosΩ - 

cosi cosω sinΩ.
Using /a rΨ = , the lunar potential can be rewritten as 

El-Saftawy (1991)
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where μM and RM are the lunar gravitational parameter 

and lunar equatorial radius, respectively,  ML aµ= , 

cosC i=  and sinS i= . 

 
2.2 Third-Body Attraction

 
The acceleration vector 3br  due to TB (Sun) is

 3 3 3
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where 'r  r′ is the solar position vector with respect to the 
Moon. The quantity μ′ is the solar gravitational parameter. 

The acceleration can be read as 
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which may be written as up to the second order

 ( )
3 22 2

2
3 2

' ' ' 3cos 1
2 'b

n a a rU
r a

µ ψ
     = −        

 (5)

where ψ defines the angle between r  and 'r . 
Also, ψ can be formulated using the orbital elements as 

follows:
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with the following non-vanishing coefficients of Aij 

(Rahoma, 2016).
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2.3 Effect of the Solar Radiation Pressure

Assuming the solar radiation acceleration ( SRPr ) and 

Sun–sail direction are perpendicular to the direction of mo-

tion (Fig. 1), the sail acceleration equals the Sun attraction 

in magnitude, but in an opposite direction. 

2.4 Solar Sail Lightness Number

Solar sailing is a new technology applied in the propul-

sion of a spacecraft. The reflective surface utilizes SRP to 

accelerate the spacecraft, consistent with the strategy adopt-

ed for IKAROS (2010), NanoSail-D (2010), and LightSail-1 

(2016). The sail acceleration is unlimited and continuous, 

which helps a long term mission. The sailing efficiency de-

pends mainly on the sail lightness number and orientation.

Lightness number, β , is a dimensionless number, and it 

can be defined as the ratio of acceleration due to solar radi-

ation to acceleration due to solar gravitational pull (Fu et al. 

2016). 

 
( )

2
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Gm m
ρ

β
ρ

= =

where ρ is the distance between the sail and the Sun, A 

is the area of the sail, Pmax(ρ) is the maximum of SRP. It 

depends on orientation and reflected properties of the sail. 

Fig. 2 introduces the values of Pmax which reaches the 

first five planets in the solar system. On Earth, Pmax is 

approximately 9 μN/m2.

In other words, the lightness number reflects the ability of 

the sail to exploit SRP, irrespective of the sail’s size.

Table 1 shows the lightness number, area-to-mass ratio 

and the featured acceleration for a sail of mass 10 kg (Farres 

2019).

The acceleration represents SRP due to the Sun and can 

be written as the equation given by Tresaco et al. (2016).

 3

''
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r rr
r r
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   (6)

Fig. 1. Geometry of orbits, coordinates, vectors, and angles used in the 
dynamical system.

Fig. 2. Maximum SRP for the locations of the first five planets in the Solar 
System. SRP, solar radiation pressure.

Table 1. Relation between lightness number, area-to-mass ratio, and 
acceleration

Lightness number Area-to-mass ratio  
(g/m2)

Acceleration 
(mm/s2)

0.01 153.0 0.059935

0.02 76.5 0.119869

0.03 51.0 0.0179804

0.04 38.25 0.239739

0.05 30.6 0.359608
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Using Legendre polynomials to expand equation (6), it 

returns to the second order as follows:

 ( )
2

2
2

1' cos 3cos 1
2SRP

r rU
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βµ ψ ψ
   = − + − 
  

′


′′
 (7)

3. REDUCED SYSTEM

To reduce the dynamical system’s degrees of freedom 

and eliminate the short-period terms, we present a dou-

ble-averaging to terminate the short period of the sail and 

that of TB. The double-averaging for a function F is defined 

as follows:

 2 2

2 0 0
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Consistent with the derivations provided by Abd El-Salam 

et al. (2006), the average procedure on the lunar disturbing 

potential (wherein the orbital elements, except the mean 

anomaly, are constants) returns the following:
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Averaging over the TB period yields the following 

(Rahoma 2016):
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where the non-vanishing coefficients are as follows:
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Averaging Eq. (7) upon the spacecraft’s eccentric anoma-

ly yields
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4. COMPUTATION OF FROZEN ORBITS

To formulate the time derivative of pericenter argument 
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and eccentricity, Lagrange planetary equations introduced 

by Brouwer & Clemence (1961) yields:

( )
2

* * *
3 22 2 2

1 cot  
1

M b SRP
d e i U U U
dt e ina e na e
ω  − ∂ ∂ = − + + +

 ∂ ∂− 
 (11)

 ( )
2 2

* * *
3 22 2

1 1  M b SRP
de e e U U U
dt ina e na eω

 − ∂ − ∂ = − + +
 ∂ ∂ 

 (12)

Frozen orbit can be guaranteed by elimination of the rate 

of change of pericenter argument and eccentricity of the 

orbit, which are referred to as the equilibrium points in the 

dynamical system:

 0 de
dt

=  (13.1)

 0 d
dt
ω
=  (13.2)

This procedure is essentially dependent on the effect of 

the zonal harmonics terms.

Eq. (11) depends mainly on the orbital semi-major axis, 

eccentricity, and inclination. Therefore, this equation can be 

represented by a 3D surface (a, e, i) . Each point on that surface 

represents initial conditions of the frozen orbits.

5. RESULTS AND ANALYSIS

In general, assume that the reference frame had its x-axis 

coincide with the TB nodal line at the initial time point, 

i.e., Ω′ = 0, ω = π/2 or 3π/2, and Ω - Ω′= 2kπ, where k is an 

integer.

Consistent with the findings by Meyer at al. (1994), 

the required data and orbital parameters of the Moon’s 

referenced orbit applied in simulation for frozen orbits are 

mentioned in Table 2.

To derive the lunar frozen orbits, we used equation (13) 

in equation (11) to yield a solution dependent on (a, e, i), 

which provided a 3D surface as shown in Figs. 3 and 4. 

To perform detailed analyses, we presented cross sections 

at different values for semi-major axis and graph for the 

entire potential range of the eccentricity and inclination 

values, i.e., the initial conditions (e, i) of the frozen orbits 

were depicted for different values of α and β.

Figs. 5 and 6 represent the section (e, i) at β = 0.2 for cho-

sen semi-major (a) 3,500, 5,500, and 7,500 km; ω = 3π/2 and 

π/2, respectively.

Figs. 7 and 8 show the sections when β = 0.2, 0.8 for α = 

2,580 km, and ω = π/2, 3π/2, respectively. 

Table 2. Dynamical model parameters

Sun μ′ = 1.32712 × 1011 km3/s3

e′ = 0.0549, i′ = 5.145 deg

Moon Rp = 1,737 km, μ = 4.905 × 103 km3/s3

J2 = 202.4 × 10-6, J3 = 8.47 × 10-6

J4 = 11.73 × 10-6, J5 = 2.39 × 10-6

C22 = -22.3 × 10-6, C31 = 28.43 × 10-6

Fig. 3. Frozen orbit surface (a, i, e) for 
2
πω β= ;  =0.2 .

Fig. 4. Frozen orbit surface (a, i, e)  for 
3 ;
2
πω β=  =0.2 .
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From the graphs, we can observe the following:

1-  The eccentricity value of frozen orbits increases when 

the inclination (i) changes from 0 to π and approaches 

the families of critical inclinations (inclinations at 

which apocenter drift is zero) (Rahoma & Abd El-

Salam 2014).

2-  The effects due to SRP and TB increase with the increase 

in the orbital semi-major axis; refer Figs. 7 and 8.

3-  SRP perturbation is primarily based on the sail’s area-

to-mass ratio, which is expressed in the dynamic mod-

el within β in addition to the orbit semi-major axis.

4-  At polar orbits, the eccentricity value of the frozen 

orbits increases as β increases.

5-  Although there are different initial conditions, we ob-

served from the 2D Figs. 5 and 6 that the frozen orbits 

are nearly the same at ω = π/2 and ω = 3π/2, except for 

Fig. 5. Section (i, e) of frozen orbits where β = 0.2, ω = π/2 and different value 
of a.

Fig. 6. Section (i, e) of frozen orbits where β = 0.2, ω = 3π/2 and different values 
of a.

Fig. 7. Section (i, e) of frozen orbits where α = 2,580 km, β = 0.8, and 
,  π πω =

3
2 2

.

Fig. 8. Section (i, e) of frozen orbits where α = 2,580 km, β = 0.2, and 
,  π πω =

3
2 2

.
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the few dashed lines added to the left-hand side of the 

figures when ω = π/2.

6-  We noticed a significant change in Figs. 7 and 8 de-

pending on the different values for lightness number of 

the sail, β.

6. CONCLUSIONS

A good understanding of non-integrable dynamics is 

essential for deriving the locations of the frozen orbits and 

designing future Moon missions; furthermore, for Moon 

missions, if we select one parameter of a frozen orbit, we 

can obtain the remaining two parameters.

The dynamics of frozen orbits of a solar sail planet’s 

orbiter type has been introduced (applied here to the 

Moon). The model includes first order of the gravitational 

sectorial and tesseral harmonics, which in case of bodies 

like the Moon are sufficiently big and cannot be neglected. 

These harmonics are considered to be of the same order as 

that of the zonal harmonics up to J5. Additionally, the model 

involves TB attraction and SRP. By performing double-aver-

age techniques, the short-period terms are eliminated. The 

study included the third-body’s inclination and eccentricity, 

which gives an additional complexity to the dynamical 

equations. In such scenarios, the initial conditions of the  

frozen orbits are introduced.

A 3D surface was derived where each point represented 

the initial conditions for lunar uneven mass associated with 

the chosen frozen orbits, considering different perturbations 

in formulation equations (11 and 12) of the dynamic model. 

The sail’s area-to-mass ratio (A/m) has a strong effect on 

sail-craft dynamics, given the lightness number value, i.e., 

area-to-mass ratio for the solar sail must be well-planned 

for future missions. In the future, we aim to extend this 

study to include effects of the Moon’s gravitational higher 

harmonics in the dynamics. Also, the attraction of both the 

Sun and Earth can be enforced in calculations.
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