• Title/Summary/Keyword: Personalized recommendation

Search Result 410, Processing Time 0.022 seconds

Personalized Web Service Recommendation Method Based on Hybrid Social Network and Multi-Objective Immune Optimization

  • Cao, Huashan
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.426-439
    • /
    • 2021
  • To alleviate the cold-start problem and data sparsity in web service recommendation and meet the personalized needs of users, this paper proposes a personalized web service recommendation method based on a hybrid social network and multi-objective immune optimization. The network adds the element of the service provider, which can provide more real information and help alleviate the cold-start problem. Then, according to the proposed service recommendation framework, multi-objective immune optimization is used to fuse multiple attributes and provide personalized web services for users without adjusting any weight coefficients. Experiments were conducted on real data sets, and the results show that the proposed method has high accuracy and a low recall rate, which is helpful to improving personalized recommendation.

Assessing Personalized Recommendation Services Using Expectancy Disconfirmation Theory

  • Il Young Choi;Hyun Sil Moon;Jae Kyeong Kim
    • Asia pacific journal of information systems
    • /
    • v.29 no.2
    • /
    • pp.203-216
    • /
    • 2019
  • There is an accuracy-diversity dilemma with personalized recommendation services. Some researchers believe that accurate recommendations might reinforce customer satisfaction. However, others claim that highly accurate recommendations and customer satisfaction are not always correlated. Thus, this study attempts to establish the causal factors that determine customer satisfaction with personalized recommendation services to reconcile these incompatible views. This paper employs statistical analyses of simulation to investigate an accuracy-diversity dilemma with personalized recommendation services. To this end, we develop a personalized recommendation system and measured accuracy, diversity, and customer satisfaction using a simulation method. The results show that accurate recommendations positively affected customer satisfaction, whereas diverse recommendations negatively affected customer satisfaction. Also, customer satisfaction was associated with the recommendation product size when neighborhood size was optimal in accuracy. Thus, these results offer insights into personalizing recommendation service providers. The providers must identify customers' preferences correctly and suggest more accurate recommendations. Furthermore, accuracy is not always improved as the number of product recommendation increases. Accordingly, providers must propose adequate number of product recommendation.

Influence A Study on the Effects of Personalized Recommendation Service of OTT Service on the Relationship Strength and Customer Loyalty in Accordance with Type of Contents (콘텐츠 유형에 따라 OTT 서비스의 개인화추천서비스가 관계강화 및 고객충성도에 미치는 영향)

  • Kim, Minjoo;Kim, Minkyun
    • Journal of Service Research and Studies
    • /
    • v.8 no.4
    • /
    • pp.31-51
    • /
    • 2018
  • The objective of this study is to suggest the measures for providing the personalized recommendation service, by analyzing the effects of personalized recommendation service of OTT service on the relationship strength and customer loyalty, and also to verify the differences in meanings of personalized recommendation service in accordance with the type of contents. In the results of this study, the personalized recommendation service has significant effects on the customer loyalty with the mediation of relationship strength, and in accordance with the type of contents mainly used by customers, there are differences in the effects of personalized recommendation service on the customers. Personalized recommendation service could be used as a tool for strengthening the relationship by inducing the commitment, which could improve the customer loyalty. When the contents have more active communications with customers, personalized recommendation service could largely contribute to the improvement of loyalty.

The Effect of the Personalized Recommendation System of Online Shopping Platform on Consumers' Purchase Intention (온라인 쇼핑 플랫폼의 개인화 추천 시스템이 소비자의 구매의도에 미치는 영향)

  • Yingying Lu;Jongki Kim
    • Information Systems Review
    • /
    • v.25 no.4
    • /
    • pp.67-87
    • /
    • 2023
  • Many online shopping sites now offer personalized recommendation systems to improve consumers' shopping experiences by lowering costs (time, cost, etc.), catering to consumers' tastes, and stimulating consumers' potential shopping needs. So far, domestic and foreign research on the personalized recommendation system has mainly focused on the field of computer science, which is advantageous for obtaining accurate personalized recommendation results for users but difficult to continuously track the users' psychological states or behavioral intentions. This study attempted to investigate the effect of the characteristics of the personalized recommendation system in the online shopping environment on consumer perception and purchase intention for consumers using the Stimulus-Organism-Response (S-O-R) model. The analysis results adopted all hypotheses on the effect of the quality of the personalized recommendation system and information quality on trust and perceived value. Through the empirical results of this study, the factors influencing consumers' use of personalized recommendation system can be identified. In order to increase more purchase, online shopping companies need to understand consumers' tastes and improve the quality of the personalized system by improving the recommendation algorithm thus to provide more information about products.

Affection-enhanced Personalized Question Recommendation in Online Learning

  • Mingzi Chen;Xin Wei;Xuguang Zhang;Lei Ye
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.12
    • /
    • pp.3266-3285
    • /
    • 2023
  • With the popularity of online learning, intelligent tutoring systems are starting to become mainstream for assisting online question practice. Surrounded by abundant learning resources, some students struggle to select the proper questions. Personalized question recommendation is crucial for supporting students in choosing the proper questions to improve their learning performance. However, traditional question recommendation methods (i.e., collaborative filtering (CF) and cognitive diagnosis model (CDM)) cannot meet students' needs well. The CDM-based question recommendation ignores students' requirements and similarities, resulting in inaccuracies in the recommendation. Even CF examines student similarities, it disregards their knowledge proficiency and struggles when generating questions of appropriate difficulty. To solve these issues, we first design an enhanced cognitive diagnosis process that integrates students' affection into traditional CDM by employing the non-compensatory bidimensional item response model (NCB-IRM) to enhance the representation of individual personality. Subsequently, we propose an affection-enhanced personalized question recommendation (AE-PQR) method for online learning. It introduces NCB-IRM to CF, considering both individual and common characteristics of students' responses to maintain rationality and accuracy for personalized question recommendation. Experimental results show that our proposed method improves the accuracy of diagnosed student cognition and the appropriateness of recommended questions.

The Effects of Perceived Netflix Personalized Recommendation Service on Satisfying User Expectation (지각된 넷플릭스 개인화 추천 서비스가 이용자 기대충족에 미치는 영향)

  • Jeong, Seung-Hwa
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.7
    • /
    • pp.164-175
    • /
    • 2022
  • The OTT (Over The Top) platform promotes itself as a distinctive competitive advantage in that it allows users to stay on the platform longer and visit more often through a Personalized Recommendation Service. In this study, the characteristics of the Personalized Recommendation Service are divided into three categories: recommendation accuracy, recommendation diversity, and recommendation novelty. Then proposed a research model which affects the usefulness of users to recognize recommendation services by each characteristics and leads to satisfaction of expectations. The result of conducting an online survey of 300 people in their 20s and 30s who subscribe Netflix shows that the perceived usefulness increased when the accuracy, variety, and novelty of Netflix's Recommendation Service were high. It was also confirmed that high perceived usefulness leads to satisfaction of expectations before and after Netflix use. The derived research results can confirm the importance of evaluating the personalized recommendation service in terms of user experience and provide implications for ways to improve the quality of recommendation services.

Development of Personalized Insurance Product Recommendation Systems based on Artificial Neural Networks (인공신경망 기반의 개인 맞춤형 보험 상품 추천 시스템 개발)

  • Seo, Kwang-Kyu
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.4
    • /
    • pp.309-314
    • /
    • 2008
  • Many studies on predicting and recommending information and products have been studying to meet customers' preference. Unnecessary information should be removed to satisfy customers' needs in massive information. The some information filtering methods to remove unnecessary information have been suggested but these methods have scarcity and scalability problems. Therefore, this paper explores a personalized recommendation system based on artificial neural network (ANN) to solve these problems. The insurance product recommendation is adapted as an example to demonstrate the proposed method. The proposed recommendation system is expected to recommended a suitable and personalized insurance products for customers' satisfaction.

Device-Centered Personalized Product Recommendation Method using Purchase and Share Behavior in E-Commerce Environment (이커머스 환경에서 구매와 공유 행동을 이용한 기기 중심 개인화 상품 정보 추천 기법)

  • Kwon, Joon Hee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.4
    • /
    • pp.85-96
    • /
    • 2022
  • Personalized recommendation technology is one of the most important technologies in electronic commerce environment. It helps users overcome information overload by suggesting information that match user's interests. In e-commerce environment, both mobile device users and smart device users have risen dramatically. It creates new challenges. Our method suggests product information that match user's device interests beyond only user's interests. We propose a device-centered personalized recommendation method. Our method uses both purchase and share behavior for user's devices interests. Moreover, it considers data type preference for each device. This paper presents a new recommendation method and algorithm. Then, an e-commerce scenario with a computer, a smartphone and an AI-speaker are described. The scenario shows our work is better than previous researches.

Effects of the User's Perceived Threat to Freedom and Personalization on Intention to Use Recommendation Services (자유 위협과 개인화에 대한 사용자의 지각이 상품 추천 서비스 수용에 미치는 영향)

  • Lee, Gyu-Dong;Kim, Jong-Uk;Lee, Won-Jun
    • Asia pacific journal of information systems
    • /
    • v.17 no.1
    • /
    • pp.123-145
    • /
    • 2007
  • There are flourishing studies in the acceptance or usage of information systems literature. Most of them have taken the pro - acceptance view. Undesirably, information technologies often provoke users' reactance or resistance. This paper explores one of the negative reactions -psychological reactance. The present paper studies the effects of the users' perception of threatened freedom and personalization degree on intention to use recommendation services. High personalization can be a major motivation for users to accept recommendation systems. However recommendation services are a two-edged sword, which not only provides users the efficiency of decision making but also poses threats to free choice. When people consider that their freedom is reduced or threatened by others, they experience the motivational state to restore the freedom. This motivational state must be considered in understanding usage of information systems, especially personalized services which are designed for persuasion or compliance. This paper empirically investigates the effect of personalization and the psychological reactance on the intention to use information systems in the personalized recommendation context. Users' perception of personalization increases the usefulness of recommendation service while their perception of threat to freedom reduces the intention to use personalized recommendation service. Findings and implications are discussed.

Personalized Product Recommendation Method for Analyzing User Behavior Using DeepFM

  • Xu, Jianqiang;Hu, Zhujiao;Zou, Junzhong
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.369-384
    • /
    • 2021
  • In a personalized product recommendation system, when the amount of log data is large or sparse, the accuracy of model recommendation will be greatly affected. To solve this problem, a personalized product recommendation method using deep factorization machine (DeepFM) to analyze user behavior is proposed. Firstly, the K-means clustering algorithm is used to cluster the original log data from the perspective of similarity to reduce the data dimension. Then, through the DeepFM parameter sharing strategy, the relationship between low- and high-order feature combinations is learned from log data, and the click rate prediction model is constructed. Finally, based on the predicted click-through rate, products are recommended to users in sequence and fed back. The area under the curve (AUC) and Logloss of the proposed method are 0.8834 and 0.0253, respectively, on the Criteo dataset, and 0.7836 and 0.0348 on the KDD2012 Cup dataset, respectively. Compared with other newer recommendation methods, the proposed method can achieve better recommendation effect.