• Title/Summary/Keyword: Personalization recommendation

Search Result 129, Processing Time 0.034 seconds

A Content-based TV Program Recommender (TV프로그램을 위한 내용기반 추천 시스템)

  • 유상원;이홍래;이형동;김형주
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.9 no.6
    • /
    • pp.683-692
    • /
    • 2003
  • The rapid increase of the number of channels makes it hard to find wanted programs from TV. In recent years, the number of channels come up to hundreds with the digital TV arrival. So, it will drive us to the new way of watching TV. In this paper, we introduce a recommendation system for TV programs to overcome this difficulty. We model user profiles and design each module of the system, considering TV environment. Our system gathers basic information from people manually and then updates user profiles automatically by tracking viewing and usage history. As a result, our system recommends daily TV programs based on the changing interest of users. In this paper, we address the problems and solutions by describing our system and the experiment.

Automatic Generation of Video Metadata for the Super-personalized Recommendation of Media

  • Yong, Sung Jung;Park, Hyo Gyeong;You, Yeon Hwi;Moon, Il-Young
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.4
    • /
    • pp.288-294
    • /
    • 2022
  • The media content market has been growing, as various types of content are being mass-produced owing to the recent proliferation of the Internet and digital media. In addition, platforms that provide personalized services for content consumption are emerging and competing with each other to recommend personalized content. Existing platforms use a method in which a user directly inputs video metadata. Consequently, significant amounts of time and cost are consumed in processing large amounts of data. In this study, keyframes and audio spectra based on the YCbCr color model of a movie trailer were extracted for the automatic generation of metadata. The extracted audio spectra and image keyframes were used as learning data for genre recognition in deep learning. Deep learning was implemented to determine genres among the video metadata, and suggestions for utilization were proposed. A system that can automatically generate metadata established through the results of this study will be helpful for studying recommendation systems for media super-personalization.

A Study on the Factors Affecting User Trust and Satisfaction: Focusing on the Online Fashion Curation Services

  • Hohyun Kim;Jongtae Lee
    • Asia pacific journal of information systems
    • /
    • v.33 no.4
    • /
    • pp.1156-1170
    • /
    • 2023
  • Various corporates have launched products and brands to meet the diverse needs of consumers. However, an excess of information and products could be collapsed into a choice paradox far from the intention. As an alternative to these problems, curation-based services have recently been in the limelight and can be adopted into e-commerce sites. As one of the earlier studies on the considerable factors of curation services, this study focuses on the online fashion recommendation system in which design quality, interactivity, and perceived usefulness will affect trust, satisfaction, and continued intention to use. In the result, the design quality factor shows a positive effect on satisfaction, but not on the trust. Also, interactivity doesn't demonstrate a significant positive effect on both the satisfaction and the trust factors far from the previous ones but the perceived usefulness had a positive effect on those. In addition, the personalization does not affect a significant effect on the satisfaction factor but on the trust factor. Subsequently, the trust affects the satisfaction, and the satisfaction on the continued intention to use factor, but trust does not significantly affect the continued intention to use directly.

A Study on the Effect of Booth Recommendation System on Exhibition Visitors Unplanned Visit Behavior (전시장 참관객의 계획되지 않은 방문행동에 있어서 부스추천시스템의 영향에 대한 연구)

  • Chung, Nam-Ho;Kim, Jae-Kyung
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.175-191
    • /
    • 2011
  • With the MICE(Meeting, Incentive travel, Convention, Exhibition) industry coming into the spotlight, there has been a growing interest in the domestic exhibition industry. Accordingly, in Korea, various studies of the industry are being conducted to enhance exhibition performance as in the United States or Europe. Some studies are focusing particularly on analyzing visiting patterns of exhibition visitors using intelligent information technology in consideration of the variations in effects of watching exhibitions according to the exhibitory environment or technique, thereby understanding visitors and, furthermore, drawing the correlations between exhibiting businesses and improving exhibition performance. However, previous studies related to booth recommendation systems only discussed the accuracy of recommendation in the aspect of a system rather than determining changes in visitors' behavior or perception by recommendation. A booth recommendation system enables visitors to visit unplanned exhibition booths by recommending visitors suitable ones based on information about visitors' visits. Meanwhile, some visitors may be satisfied with their unplanned visits, while others may consider the recommending process to be cumbersome or obstructive to their free observation. In the latter case, the exhibition is likely to produce worse results compared to when visitors are allowed to freely observe the exhibition. Thus, in order to apply a booth recommendation system to exhibition halls, the factors affecting the performance of the system should be generally examined, and the effects of the system on visitors' unplanned visiting behavior should be carefully studied. As such, this study aims to determine the factors that affect the performance of a booth recommendation system by reviewing theories and literature and to examine the effects of visitors' perceived performance of the system on their satisfaction of unplanned behavior and intention to reuse the system. Toward this end, the unplanned behavior theory was adopted as the theoretical framework. Unplanned behavior can be defined as "behavior that is done by consumers without any prearranged plan". Thus far, consumers' unplanned behavior has been studied in various fields. The field of marketing, in particular, has focused on unplanned purchasing among various types of unplanned behavior, which has been often confused with impulsive purchasing. Nevertheless, the two are different from each other; while impulsive purchasing means strong, continuous urges to purchase things, unplanned purchasing is behavior with purchasing decisions that are made inside a store, not before going into one. In other words, all impulsive purchases are unplanned, but not all unplanned purchases are impulsive. Then why do consumers engage in unplanned behavior? Regarding this question, many scholars have made many suggestions, but there has been a consensus that it is because consumers have enough flexibility to change their plans in the middle instead of developing plans thoroughly. In other words, if unplanned behavior costs much, it will be difficult for consumers to change their prearranged plans. In the case of the exhibition hall examined in this study, visitors learn the programs of the hall and plan which booth to visit in advance. This is because it is practically impossible for visitors to visit all of the various booths that an exhibition operates due to their limited time. Therefore, if the booth recommendation system proposed in this study recommends visitors booths that they may like, they can change their plans and visit the recommended booths. Such visiting behavior can be regarded similarly to consumers' visit to a store or tourists' unplanned behavior in a tourist spot and can be understand in the same context as the recent increase in tourism consumers' unplanned behavior influenced by information devices. Thus, the following research model was established. This research model uses visitors' perceived performance of a booth recommendation system as the parameter, and the factors affecting the performance include trust in the system, exhibition visitors' knowledge levels, expected personalization of the system, and the system's threat to freedom. In addition, the causal relation between visitors' satisfaction of their perceived performance of the system and unplanned behavior and their intention to reuse the system was determined. While doing so, trust in the booth recommendation system consisted of 2nd order factors such as competence, benevolence, and integrity, while the other factors consisted of 1st order factors. In order to verify this model, a booth recommendation system was developed to be tested in 2011 DMC Culture Open, and 101 visitors were empirically studied and analyzed. The results are as follows. First, visitors' trust was the most important factor in the booth recommendation system, and the visitors who used the system perceived its performance as a success based on their trust. Second, visitors' knowledge levels also had significant effects on the performance of the system, which indicates that the performance of a recommendation system requires an advance understanding. In other words, visitors with higher levels of understanding of the exhibition hall learned better the usefulness of the booth recommendation system. Third, expected personalization did not have significant effects, which is a different result from previous studies' results. This is presumably because the booth recommendation system used in this study did not provide enough personalized services. Fourth, the recommendation information provided by the booth recommendation system was not considered to threaten or restrict one's freedom, which means it is valuable in terms of usefulness. Lastly, high performance of the booth recommendation system led to visitors' high satisfaction levels of unplanned behavior and intention to reuse the system. To sum up, in order to analyze the effects of a booth recommendation system on visitors' unplanned visits to a booth, empirical data were examined based on the unplanned behavior theory and, accordingly, useful suggestions for the establishment and design of future booth recommendation systems were made. In the future, further examination should be conducted through elaborate survey questions and survey objects.

Design and Implementation of an Intelligent System for Personalized Contents Recommendation on Smart TVs (스마트 TV 상의 개인화된 콘텐츠 추천을 위한 지능형 시스템 설계 및 구현)

  • Lee, Sang Hoon;Kim, Su-Yeon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.4
    • /
    • pp.73-79
    • /
    • 2013
  • Recently, smart TVs have widely spread in our daily lives. However, it is difficult for users to find proper TV contents among a lot of TV and application contents because of inconvenience of input devices compared with those of smart phones or smart pads, so there are some problems with very low utilization of the smart functionalities of smart TVs. We suggest a personalized contents recommender system on smart TVs to resolve these problems and help for users to search appropriate contents easily and quickly in this research. We design and implement an intelligent system for personalized contents recommendation on the smart TVs based on multi-dimensional analysis considering user profiles and preferences, watching patterns of TV programs, and TV contents use statistics of TV users.

Method of Associative Group Using FP-Tree in Personalized Recommendation System (개인화 추천 시스템에서 FP-Tree를 이용한 연관 군집 방법)

  • Cho, Dong-Ju;Rim, Kee-Wook;Lee, Jung-Hyun;Chung, Kyung-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.10
    • /
    • pp.19-26
    • /
    • 2007
  • Since collaborative filtering has used the nearest-neighborhood method based on item preference it cannot only reflect exact contents but also has the problem of sparsity and scalability. The item-based collaborative filtering has been practically used improve these problems. However it still does not reflect attributes of the item. In this paper, we propose the method of associative group using the FP-Tree to solve the problem of existing recommendation system. The proposed makes frequent item and creates association rule by using FP-Tree without occurrence of candidate set. We made the efficient item group using $\alpha-cut$ according to the confidence of the association rule. To estimate the performance, the suggested method is compared with Gibbs Sampling, Expectation Maximization, and K-means in the MovieLens dataset.

An Inference Verification Tool based on a Context Information Ontology (상황 정보 온톨로지 기반 추론 검증 도구)

  • Kim, Mok-Ryun;Park, Young-Ho
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.6
    • /
    • pp.488-501
    • /
    • 2009
  • In ubiquitous environments, invisible devices and software are connected to one another to provide convenient services to users. In order to provide such services, we must have mobile devices that connect users and services. But such services are usually limited to those served on a single mobile device. To resolve the resource limitation problem of mobile devices, a nearby resource sharing research has been studied. Also, not only the nearby resource share but also a resource recommendation through context-based resource reasoning has been studied such as an UMO Project. The UMO Project share and manage the various context information for the personalization resource recommendation and reason based on current context information. Also, should verify resource inference rules for reliable the resource recommendation. But, to create various context information requires huge cost and time in actuality. Thus, we propose a inference verification tool called USim to resolve problem. The proposed inference verification tool provides convenient graphic user interfaces and it easily creates context information. The USim exactly verifies new inference rules through dynamic changes of context information.

Recommender Systems using SVD with Social Network Information (사회연결망정보를 고려하는 SVD 기반 추천시스템)

  • Kim, Min-Gun;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.1-18
    • /
    • 2016
  • Collaborative Filtering (CF) predicts the focal user's preference for particular item based on user's preference rating data and recommends items for the similar users by using them. It is a popular technique for the personalization in e-commerce to reduce information overload. However, it has some limitations including sparsity and scalability problems. In this paper, we use a method to integrate social network information into collaborative filtering in order to mitigate the sparsity and scalability problems which are major limitations of typical collaborative filtering and reflect the user's qualitative and emotional information in recommendation process. In this paper, we use a novel recommendation algorithm which is integrated with collaborative filtering by using Social SVD++ algorithm which considers social network information in SVD++, an extension algorithm that can reflect implicit information in singular value decomposition (SVD). In particular, this study will evaluate the performance of the model by reflecting the real-world user's social network information in the recommendation process.

Development of personalized clothing recommendation service based on artificial intelligence (인공지능 기반 개인 맞춤형 의류 추천 서비스 개발)

  • Kim, Hyoung Suk;Lee, Jong Hyuck;Lee, Hyun Dong
    • Smart Media Journal
    • /
    • v.10 no.1
    • /
    • pp.116-123
    • /
    • 2021
  • Due to the rapid growth of the online fashion market and the resulting expansion of online choices, there is a problem that the seller cannot directly respond to a large number of consumers individually, although consumers are increasingly demanding for more personalized recommendation services. Images are being tagged as a way to meet consumer's personalization needs, but when people tagging, tagging is very subjective for each person, and artificial intelligence tagging has very limited words and does not meet the needs of users. To solve this problem, we designed an algorithm that recognizes the shape, attribute, and emotional information of the product included in the image with AI, and codes this information to represent all the information that the image has with a combination of codes. Through this algorithm, it became possible by acquiring a variety of information possessed by the image in real time, such as the sensibility of the fashion image and the TPO information expressed by the fashion image, which was not possible until now. Based on this information, it is possible to go beyond the stage of analyzing the tastes of consumers and make hyper-personalized clothing recommendations that combine the tastes of consumers with information about trends and TPOs.

A Research on Image Metadata Extraction through YCrCb Color Model Analysis for Media Hyper-personalization Recommendation (미디어 초개인화 추천을 위한 YCrCb 컬러 모델 분석을 통한 영상의 메타데이터 추출에 대한 연구)

  • Park, Hyo-Gyeong;Yong, Sung-Jung;You, Yeon-Hwi;Moon, Il-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.277-280
    • /
    • 2021
  • Recently as various contents are mass produced based on high accessibility, the media contents market is more active. Users want to find content that suits their taste, and each platform is competing for personalized recommendations for content. For an efficient recommendation system, high-quality metadata is required. Existing platforms take a method in which the user directly inputs the metadata of an image. This will waste time and money processing large amounts of data. In this paper, for media hyperpersonalization recommendation, keyframes are extracted based on the YCrCb color model of the video based on movie trailers, movie genres are distinguished through supervised learning of artificial intelligence and In the future, we would like to propose a utilization plan for generating metadata.

  • PDF