• Title/Summary/Keyword: Personal information Security

Search Result 1,362, Processing Time 0.028 seconds

Topic Modeling-Based Domestic and Foreign Public Data Research Trends Comparative Analysis (토픽 모델링 기반의 국내외 공공데이터 연구 동향 비교 분석)

  • Park, Dae-Yeong;Kim, Deok-Hyeon;Kim, Keun-Wook
    • Journal of Digital Convergence
    • /
    • v.19 no.2
    • /
    • pp.1-12
    • /
    • 2021
  • With the recent 4th Industrial Revolution, the growth and value of big data are continuously increasing, and the government is also actively making efforts to open and utilize public data. However, the situation still does not reach the level of demand for public data use by citizens, At this point, it is necessary to identify research trends in the public data field and seek directions for development. In this study, in order to understand the research trends related to public data, the analysis was performed using topic modeling, which is mainly used in text mining techniques. To this end, we collected papers containing keywords of 'Public data' among domestic and foreign research papers (1,437 domestically, 9,607 overseas) and performed topic modeling based on the LDA algorithm, and compared domestic and foreign public data research trends. After analysis, policy implications were presented. Looking at the time series by topic, research in the fields of 'personal information protection', 'public data management', and 'urban environment' has increased in Korea. Overseas, it was confirmed that research in the fields of 'urban policy', 'cell biology', 'deep learning', and 'cloud·security' is active.

Oral hygiene management of patients with dental implants using electronic media (Smartphone) (전자매체(스마트폰)를 이용한 치과임플란트환자의 구강위생 관리)

  • Yang, Hyun Woo;Kim, Jin;Choi, Hanmaeum;Fang, Yiqin;Kim, So Young;Lee, Chunui
    • Journal of Korean Academy of Dental Administration
    • /
    • v.7 no.1
    • /
    • pp.39-43
    • /
    • 2019
  • Smartphone usage has become so common that it has reached 2 billion people in the last year. As a result of this, hospitals have started making use of smartphones at various medical sites and research services for patients. This study aimed to establish support for developing a long distance program for patients with implants who have difficulty visiting clinics or with busy modern lives, by using smartphones for oral hygiene management instruction. The data were collected for 12 weeks, from July 24 to October 21, 2015, for patients who agreed to participate in the study. Although the subjects found the process of transferring photos via smartphone to be cumbersome (75%), the satisfaction level of the oral hygiene management program was excellent for all participating patients, and they all wanted to continue with further management using this process. The results from the phone satisfaction survey showed that oral hygiene self-management after oral hygiene control training by smartphones was mostly equal to previous habits (87.5%) or had partially increased but had not decreased. The need for data on more varied age groups and the issues of protecting the security of personal information on smartphones require further study. However, our study confirmed the efficacy of using electronic media (smartphones) for oral hygiene management in patients with a dental implant due to their improvement of oral hygiene performance as evidenced by less bleeding from probing on post-program visit.

DoS/DDoS attacks Detection Algorithm and System using Packet Counting (패킷 카운팅을 이용한 DoS/DDoS 공격 탐지 알고리즘 및 이를 이용한 시스템)

  • Kim, Tae-Won;Jung, Jae-Il;Lee, Joo-Young
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.151-159
    • /
    • 2010
  • Currently, by using the Internet, We can do varius things such as Web surfing, email, on-line shopping, stock trading on your home or office. However, as being out of the concept of security from the beginning, it is the big social issues that malicious user intrudes into the system through the network, on purpose to steal personal information or to paralyze system. In addition, network intrusion by ordinary people using network attack tools is bringing about big worries, so that the need for effective and powerful intrusion detection system becomes very important issue in our Internet environment. However, it is very difficult to prevent this attack perfectly. In this paper we proposed the algorithm for the detection of DoS attacks, and developed attack detection tools. Through learning in a normal state on Step 1, we calculate thresholds, the number of packets that are coming to each port, the median and the average utilization of each port on Step 2. And we propose values to determine how to attack detection on Step 3. By programing proposed attack detection algorithm and by testing the results, we can see that the difference between the median of packet mounts for unit interval and the average utilization of each port number is effective in detecting attacks. Also, without the need to look into the network data, we can easily be implemented by only using the number of packets to detect attacks.

A Study on Risk Issues and Policy for Future Society of Digital Transformation: Focusing on Artificial Intelligence (디지털 전환의 미래사회 위험이슈 및 정책적 대응 방향: 인공지능을 중심으로)

  • Koo, Bonjin
    • Journal of Technology Innovation
    • /
    • v.30 no.1
    • /
    • pp.1-20
    • /
    • 2022
  • Digital transformation refers to the economic and social effects of digitisation and digitalisation. Although digital transformation acts as a useful tool for economic/social development and enhancing the convenience of life, it can have negative effects (misuse of personal information, ethical problems, deepening social gaps, etc.). The government is actively establishing policies to promote digital transformation to secure competitiveness and technological hegemony, however, understanding of digital transformation-related risk issues and implementing policies to prevent them are relatively slow. Thus, this study systematically identifies risk issues of the future society that can be caused by digital transformation based on quantitative analysis of media articles big data through the Embedded Topic Modeling method. Specifically, first, detailed issues of negative effects of digital transformation in major countries were identified. Then detailed issues of negative effects of artificial intelligence in major countries and Korea were identified. Further, by synthesizing the results, future direction of the government's digital transformation policies for responding the negative effects was proposed. The policy implications are as follows. First, since the negative effects of digital transformation does not only affect technological fields but also affect the overall society, such as national security, social issues, and fairness issues. Therefore, the government should not only promote the positive functions of digital transformation, but also prepare policies to counter the negative functions of digital transformation. Second, the detailed issues of future social risks of digital transformation appear differently depending on contexts, so the government should establish a policy to respond to the negative effects of digital transformation in consideration of the national and social context. Third, the government should set a major direction for responding negative effects of digital transformation to minimize confusion among stakeholders, and prepare effective policy measures.

AutoML Machine Learning-Based for Detecting Qshing Attacks Malicious URL Classification Technology Research and Service Implementation (큐싱 공격 탐지를 위한 AutoML 머신러닝 기반 악성 URL 분류 기술 연구 및 서비스 구현)

  • Dong-Young Kim;Gi-Seong Hwang
    • Smart Media Journal
    • /
    • v.13 no.6
    • /
    • pp.9-15
    • /
    • 2024
  • In recent trends, there has been an increase in 'Qshing' attacks, a hybrid form of phishing that exploits fake QR (Quick Response) codes impersonating government agencies to steal personal and financial information. Particularly, this attack method is characterized by its stealthiness, as victims can be redirected to phishing pages or led to download malicious software simply by scanning a QR code, making it difficult for them to realize they have been targeted. In this paper, we have developed a classification technique utilizing machine learning algorithms to identify the maliciousness of URLs embedded in QR codes, and we have explored ways to integrate this with existing QR code readers. To this end, we constructed a dataset from 128,587 malicious URLs and 428,102 benign URLs, extracting 35 different features such as protocol and parameters, and used AutoML to identify the optimal algorithm and hyperparameters, achieving an accuracy of approximately 87.37%. Following this, we designed the integration of the trained classification model with existing QR code readers to implement a service capable of countering Qshing attacks. In conclusion, our findings confirm that deriving an optimized algorithm for classifying malicious URLs in QR codes and integrating it with existing QR code readers presents a viable solution to combat Qshing attacks.

Development on Early Warning System about Technology Leakage of Small and Medium Enterprises (중소기업 기술 유출에 대한 조기경보시스템 개발에 대한 연구)

  • Seo, Bong-Goon;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.143-159
    • /
    • 2017
  • Due to the rapid development of IT in recent years, not only personal information but also the key technologies and information leakage that companies have are becoming important issues. For the enterprise, the core technology that the company possesses is a very important part for the survival of the enterprise and for the continuous competitive advantage. Recently, there have been many cases of technical infringement. Technology leaks not only cause tremendous financial losses such as falling stock prices for companies, but they also have a negative impact on corporate reputation and delays in corporate development. In the case of SMEs, where core technology is an important part of the enterprise, compared to large corporations, the preparation for technological leakage can be seen as an indispensable factor in the existence of the enterprise. As the necessity and importance of Information Security Management (ISM) is emerging, it is necessary to check and prepare for the threat of technology infringement early in the enterprise. Nevertheless, previous studies have shown that the majority of policy alternatives are represented by about 90%. As a research method, literature analysis accounted for 76% and empirical and statistical analysis accounted for a relatively low rate of 16%. For this reason, it is necessary to study the management model and prediction model to prevent leakage of technology to meet the characteristics of SMEs. In this study, before analyzing the empirical analysis, we divided the technical characteristics from the technology value perspective and the organizational factor from the technology control point based on many previous researches related to the factors affecting the technology leakage. A total of 12 related variables were selected for the two factors, and the analysis was performed with these variables. In this study, we use three - year data of "Small and Medium Enterprise Technical Statistics Survey" conducted by the Small and Medium Business Administration. Analysis data includes 30 industries based on KSIC-based 2-digit classification, and the number of companies affected by technology leakage is 415 over 3 years. Through this data, we conducted a randomized sampling in the same industry based on the KSIC in the same year, and compared with the companies (n = 415) and the unaffected firms (n = 415) 1:1 Corresponding samples were prepared and analyzed. In this research, we will conduct an empirical analysis to search for factors influencing technology leakage, and propose an early warning system through data mining. Specifically, in this study, based on the questionnaire survey of SMEs conducted by the Small and Medium Business Administration (SME), we classified the factors that affect the technology leakage of SMEs into two factors(Technology Characteristics, Organization Characteristics). And we propose a model that informs the possibility of technical infringement by using Support Vector Machine(SVM) which is one of the various techniques of data mining based on the proven factors through statistical analysis. Unlike previous studies, this study focused on the cases of various industries in many years, and it can be pointed out that the artificial intelligence model was developed through this study. In addition, since the factors are derived empirically according to the actual leakage of SME technology leakage, it will be possible to suggest to policy makers which companies should be managed from the viewpoint of technology protection. Finally, it is expected that the early warning model on the possibility of technology leakage proposed in this study will provide an opportunity to prevent technology Leakage from the viewpoint of enterprise and government in advance.

An Analysis of IT Trends Using Tweet Data (트윗 데이터를 활용한 IT 트렌드 분석)

  • Yi, Jin Baek;Lee, Choong Kwon;Cha, Kyung Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.143-159
    • /
    • 2015
  • Predicting IT trends has been a long and important subject for information systems research. IT trend prediction makes it possible to acknowledge emerging eras of innovation and allocate budgets to prepare against rapidly changing technological trends. Towards the end of each year, various domestic and global organizations predict and announce IT trends for the following year. For example, Gartner Predicts 10 top IT trend during the next year, and these predictions affect IT and industry leaders and organization's basic assumptions about technology and the future of IT, but the accuracy of these reports are difficult to verify. Social media data can be useful tool to verify the accuracy. As social media services have gained in popularity, it is used in a variety of ways, from posting about personal daily life to keeping up to date with news and trends. In the recent years, rates of social media activity in Korea have reached unprecedented levels. Hundreds of millions of users now participate in online social networks and communicate with colleague and friends their opinions and thoughts. In particular, Twitter is currently the major micro blog service, it has an important function named 'tweets' which is to report their current thoughts and actions, comments on news and engage in discussions. For an analysis on IT trends, we chose Tweet data because not only it produces massive unstructured textual data in real time but also it serves as an influential channel for opinion leading on technology. Previous studies found that the tweet data provides useful information and detects the trend of society effectively, these studies also identifies that Twitter can track the issue faster than the other media, newspapers. Therefore, this study investigates how frequently the predicted IT trends for the following year announced by public organizations are mentioned on social network services like Twitter. IT trend predictions for 2013, announced near the end of 2012 from two domestic organizations, the National IT Industry Promotion Agency (NIPA) and the National Information Society Agency (NIA), were used as a basis for this research. The present study analyzes the Twitter data generated from Seoul (Korea) compared with the predictions of the two organizations to analyze the differences. Thus, Twitter data analysis requires various natural language processing techniques, including the removal of stop words, and noun extraction for processing various unrefined forms of unstructured data. To overcome these challenges, we used SAS IRS (Information Retrieval Studio) developed by SAS to capture the trend in real-time processing big stream datasets of Twitter. The system offers a framework for crawling, normalizing, analyzing, indexing and searching tweet data. As a result, we have crawled the entire Twitter sphere in Seoul area and obtained 21,589 tweets in 2013 to review how frequently the IT trend topics announced by the two organizations were mentioned by the people in Seoul. The results shows that most IT trend predicted by NIPA and NIA were all frequently mentioned in Twitter except some topics such as 'new types of security threat', 'green IT', 'next generation semiconductor' since these topics non generalized compound words so they can be mentioned in Twitter with other words. To answer whether the IT trend tweets from Korea is related to the following year's IT trends in real world, we compared Twitter's trending topics with those in Nara Market, Korea's online e-Procurement system which is a nationwide web-based procurement system, dealing with whole procurement process of all public organizations in Korea. The correlation analysis show that Tweet frequencies on IT trending topics predicted by NIPA and NIA are significantly correlated with frequencies on IT topics mentioned in project announcements by Nara market in 2012 and 2013. The main contribution of our research can be found in the following aspects: i) the IT topic predictions announced by NIPA and NIA can provide an effective guideline to IT professionals and researchers in Korea who are looking for verified IT topic trends in the following topic, ii) researchers can use Twitter to get some useful ideas to detect and predict dynamic trends of technological and social issues.

The Reserch on Actual Condition of Crime of Arson Which Occurs in Korea and Its Countermeasures (방화범죄의 실태와 그 대책 - 관심도와 동기의 다양화에 대한 대응 -)

  • Choi, Jong-Tae
    • Korean Security Journal
    • /
    • no.1
    • /
    • pp.371-408
    • /
    • 1997
  • This article is the reserch on actual condition of crime of arson which occurs in Korea and its countermeasures. The the presented problem in this article are that (1) we have generally very low rate concern about the crime of arson contrary to realistic problems of rapid increase of crime of arson (2) as such criminal motives became so diverse as to the economic or criminal purpose unlike characteristic and mental deficiency of old days, and to countermeasure these problems effectively it presentation the necessity of systemantic research. Based on analysis of reality of arson, the tendency of this arson in Korea in the ratio of increase is said to be higher than those in violence crime or general fire rate. and further its rate is far more greater than those of the U.S.A. and Japan. Arson is considered to be a method of using fire as crime and in case of presently residence to be the abject, it is a public offense crime which aqccompany fatality in human life. This is the well It now fact to all of us. And further in order to presentation to the crime of arson, strictness of criminal law (criminal law No, 164 and 169, and fire protection law No. 110 and 111) and classification of arsonist as felony are institutionary reinforced to punish with certainty of possibility, Therefore, as tendency of arson has been increased compared to other nations, it is necessary to supplement strategical policy to bring out overall concerns of the seriousness of risk and damage of arson, which have been resulted from the lack of understanding. In characteristics analysis of crime of arson, (1) It is now reveald that, in the past such crime rate appeared far more within the boundary of town or city areas in the past, presently increased rate of arsons in rural areas are far more than in the town or small city areas, thereby showing characteristics of crime of arson extending nation wide. (2) general timetable of arson shows that night more than day time rate, and reveald that is trait behavior in secrecy.(3) arsonists are usually arrested at site or by victim or report of third person(82,9%).Investigation activities or self surrenders rate only 11.2%. The time span of arrest is normally the same day of arson and at times it takes more than one year to arrest. This reveals its necessity to prepare for long period of time for arrest, (4) age rate of arson is in their thirties mostly as compared to homicide, robbery and adultery, and considerable numbers of arsons are in old age of over fifties. It reveals age rate is increased (5) Over half of the arsonists are below the junior high school (6) the rate of convicts by thier records is based on first offenders primarily and secondly more than 4 time convicts. This apparently shows necessity of effective correctional education policy for their social assimilation together with re-investigation of human education at the primary and secondary education system in thier life. The examples of motivation for arosnits, such as personal animosity, fury, monetary swindle, luscious purpose and other aims of destroying of proof, and other social resistance, violence including ways of threatening, beside the motives of individual defects, are diverse and arsonic suicide and specifically suicidal accompany together keenly manifested. When we take this fact with the criminal theory, it really reveals arsons of crime are increasing and its casualities are serious and a point as a way of suicide is the anomie theory of Durkheim and comensurate with the theory of that of Merton, Specifically in the arson of industrial complex, it is revealed that one with revolutionary motive or revolting motive would do the arsonic act. For the policy of prevention of arsons, professional research work in organizational cooperation for preventive activities is conducted in municipal or city wise functions in the name of Parson Taskforces and beside a variety of research institutes in federal government have been operating effectively to countermeasure in many fields of research. Franch and Sweden beside the U.S. set up a overall operation of fire prevention research funtions and have obtained very successful result. Japan also put their research likewise for countermeasure. In this research as a way of preventive fire policy, first, it is necessary to accomodate the legal preventitive activities for fire prevention in judicial side and as an administrative side, (1) precise statistic management of crime of arson (2) establishment of professional research functions or a corporate (3) improvement of system for cooperative structural team for investigation of fires and menpower organization of professional members. Secondly, social mentality in individual prospect, recognition of fires by arson and youth education of such effect, educational program for development and practical promotion. Thirdly, in view of environmental side, the ways of actual performance by programming with the establishment of cooperative advancement in local social function elements with administrative office, habitants, school facilities and newspapers measures (2) establishment of personal protection where weak menpowers are displayed in special fire prevention measures. These measures are presented for prevention of crime of arson. The control of crime and prevention shall be prepared as a means of self defence by the principle of self responsibility Specifically arsonists usually aims at the comparatively weak control of fire prevention is prevalent and it is therefore necessary to prepare individual facilities with their spontaneous management of fire prevention instead of public municipal funtures of local geverment. As Clifford L. Karchmer asserted instead of concerns about who would commit arson, what portion of area would be the target of the arson. It is effective to minister spontaveously the fire prevention measure in his facility with the consideration of characteristics of arson. On the other hand, it is necessary for the concerned personnel of local goverment and groups to distribute to the local society in timely manner for new information about the fire prevention, thus contribute to effective result of fire prevention result. In consideration of these factors, it is inevitable to never let coincide with the phemonemon of arsons in similar or mimic features as recognized that these could prevail just an epedemic as a strong imitational attitude. In processing of policy to encounter these problems, it is necessary to place priority of city policy to enhancement of overall concerns toward the definitive essense of crime of arson.

  • PDF

A Study on Fast Iris Detection for Iris Recognition in Mobile Phone (휴대폰에서의 홍채인식을 위한 고속 홍채검출에 관한 연구)

  • Park Hyun-Ae;Park Kang-Ryoung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.2 s.308
    • /
    • pp.19-29
    • /
    • 2006
  • As the security of personal information is becoming more important in mobile phones, we are starting to apply iris recognition technology to these devices. In conventional iris recognition, magnified iris images are required. For that, it has been necessary to use large magnified zoom & focus lens camera to capture images, but due to the requirement about low size and cost of mobile phones, the zoom & focus lens are difficult to be used. However, with rapid developments and multimedia convergence trends in mobile phones, more and more companies have built mega-pixel cameras into their mobile phones. These devices make it possible to capture a magnified iris image without zoom & focus lens. Although facial images are captured far away from the user using a mega-pixel camera, the captured iris region possesses sufficient pixel information for iris recognition. However, in this case, the eye region should be detected for accurate iris recognition in facial images. So, we propose a new fast iris detection method, which is appropriate for mobile phones based on corneal specular reflection. To detect specular reflection robustly, we propose the theoretical background of estimating the size and brightness of specular reflection based on eye, camera and illuminator models. In addition, we use the successive On/Off scheme of the illuminator to detect the optical/motion blurring and sunlight effect on input image. Experimental results show that total processing time(detecting iris region) is on average 65ms on a Samsung SCH-S2300 (with 150MHz ARM 9 CPU) mobile phone. The rate of correct iris detection is 99% (about indoor images) and 98.5% (about outdoor images).

A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm (Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구)

  • Choi, Ji-Hye;Kim, Min-Seung;Lee, Chan-Ho;Choi, Jung-Hwan;Lee, Jeong-Hee;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.