Browse > Article
http://dx.doi.org/10.14386/SIME.2022.30.1.1

A Study on Risk Issues and Policy for Future Society of Digital Transformation: Focusing on Artificial Intelligence  

Koo, Bonjin (한국과학기술기획평가원 미래성장전략센터)
Publication Information
Journal of Technology Innovation / v.30, no.1, 2022 , pp. 1-20 More about this Journal
Abstract
Digital transformation refers to the economic and social effects of digitisation and digitalisation. Although digital transformation acts as a useful tool for economic/social development and enhancing the convenience of life, it can have negative effects (misuse of personal information, ethical problems, deepening social gaps, etc.). The government is actively establishing policies to promote digital transformation to secure competitiveness and technological hegemony, however, understanding of digital transformation-related risk issues and implementing policies to prevent them are relatively slow. Thus, this study systematically identifies risk issues of the future society that can be caused by digital transformation based on quantitative analysis of media articles big data through the Embedded Topic Modeling method. Specifically, first, detailed issues of negative effects of digital transformation in major countries were identified. Then detailed issues of negative effects of artificial intelligence in major countries and Korea were identified. Further, by synthesizing the results, future direction of the government's digital transformation policies for responding the negative effects was proposed. The policy implications are as follows. First, since the negative effects of digital transformation does not only affect technological fields but also affect the overall society, such as national security, social issues, and fairness issues. Therefore, the government should not only promote the positive functions of digital transformation, but also prepare policies to counter the negative functions of digital transformation. Second, the detailed issues of future social risks of digital transformation appear differently depending on contexts, so the government should establish a policy to respond to the negative effects of digital transformation in consideration of the national and social context. Third, the government should set a major direction for responding negative effects of digital transformation to minimize confusion among stakeholders, and prepare effective policy measures.
Keywords
Negative effects of digital transformation; Risk issues of digital transformation; Response policies for problems of digital transformation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 김승현 (2020), "[혁신성장 전망_창업.중소.중견기업 정책 전망] 디지털 혁신생태계로의 전환을 준비하자", 과학기술정책연구원.
2 김용진 (2018), "디지털전환 시대의 변화와 기업의 대응 방안", 「ie 매거진」 대한산업공학회, 제25권 제1호, pp. 20-24.
3 윤상오. (2018). "인공지능 기반 공공서비스의 주요 쟁점에 관한 연구: 챗봇 (ChatBot) 서비스를 중심으로", 「한국공공관리학보」, 제32권, 제2호, pp. 83-104.   DOI
4 임희종.최보름.송지희 (2021), "기업의 디지털 전환 (DT) 경쟁력 분석 모형개발 및 적용: 공기업 10개의 사례를 중심으로". 「Korea Business Review」, 제25권, 제3호, pp. 61-100.
5 Blei, D. M. (2012), "Probabilistic topic models", Communications of the ACM, Vol. 55, No. 4, pp. 77-84.   DOI
6 Dieng, A. B., Ruiz, F. J., & Blei, D. M. (2020), "Topic modeling in embedding spaces", Transactions of the Association for Computational Linguistics, Vol. 8, pp. 439-453.   DOI
7 Wu, L., Yue, X., Jin, A. and Yen, D.C. (2016), "Smart supply chain management: A review and implications for future research", The International Journal of Logistics Management, Vol. 27, No. 2, pp. 395-417.   DOI
8 박승창 (2021), "증강휴먼 AI 기술의 역기능과 예방대책에 관한 연구", 대한전자공학회 학술대회, pp. 1595-1598.
9 신동수.이규환.이재진.주연희 (2021), "디지털 전환이 생산성 및 고용에 미치는 영향", 해외경제포커스 제 2021-22호, 한국은행 국제경제리뷰
10 신영진 (2020), "안전한 지능형 정부 구현을 위한 개선방안 연구-인공지능기술 적용에 따른 역기능 방지 및 개인정보보호를 중심으로", 「한국범죄정보연구」, 제6권, 제2호, pp. 135-162.
11 심우민. (2021), "디지털 전환과 사회갈등-입법학적 분석과 대안", 「유럽헌법연구」, 제37호, pp. 481-522.
12 안준모 (2021), "인공지능을 통한 행정의 고도화: 기회와 도전", 「한국행정연구」, 제30권, 제2호, pp. 1-33.   DOI
13 엄효진.이명진 (2020), "인공지능(AI) 기반 지능정보사회 시대의 노동시장 변화: 경제사회학적 접근을 중심으로", 「정보사회와 미디어」, 제21권, 제2호, pp. 1-20.
14 여영준 (2020), "포스트 코로나 시대 기술변화와 혁신정책 방향성 재정립: 창조적 학습사회 전환을 중심으로", 「기술혁신연구」, 제28권, 제4호, pp. 153-165.
15 이명화.최용인 (2017), "[OECD] OECD 과학기술산업 지표를 통해 본 디지털 전환 동향과 도전과제", 「과학기술정책」, 제27권, 제12호, pp. 16-21.
16 Buyukozkan, Gulcin, and Fethullah Gocer (2018), "Digital Supply Chain: Literature review and a proposed framework for future research", Computers in Industry, Vol. 97, pp. 157-177.   DOI
17 장훈 (2017), "[유럽] 디지털 전환과 노동의 미래", 「과학기술정책」, 제27권, 제11호, pp. 10-13.
18 한재필 (2018), "디지털 전환 시대의 서비스 혁신", 국토연구원.
19 Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003), "Latent dirichlet allocation". Journal of Machine Learning Research, 3(Jan), pp. 993-1022.
20 OECD (2019), "Going Digital: Shaping Policies, Improving Lives"
21 고학수.정해빈.박도현. (2019), "인공지능과 차별", 「저스티스」, 제171호, pp. 199-277.
22 임규건.안재익 (2020), "Bright Internet 신뢰네트워크 도입에 따른 지능정보사회의 사이버 역기능 해소에 대한 인식 분석", 「Information Systems Review」, 제22권, 제3호, pp. 99-118.   DOI
23 Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013), "Distributed representations of words and phrases and their compositionality". Advances in Neural Information Processing Systems, Vol. 26, pp. 3111-3119.