• Title/Summary/Keyword: Personal Air Vehicle(PAV)

Search Result 31, Processing Time 0.02 seconds

Structural Sizing for Optionally Piloted PAV Preliminary Design (유무인 겸용 개인항공기(OPPAV) 개념설계를 위한 구조물 사이징)

  • Kim, Sung Joon;Lee, Seung-gyu
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.1
    • /
    • pp.83-89
    • /
    • 2020
  • Personal air vehicle (PAV) is considered by aviation engineers as a solution to provide fast urban mobility. The purpose of designing a optionally piloted PAV (OPPAV) is to provide an individual air vehicle. The airframe structure is designed with high strength carbon fiber composite to reduce the aircraft weight. This paper presents an overview of sizing process for OPPAV at the conceptual design level. It consists of load analysis, structural sizing and development of efficient design allowable values for composite material. The weight is estimated based on sizing process, including strength and stiffness requirements. The objective of this study is to present a overview of structural sizing procedure and fast tool for preliminary design phases.

A Study on R&D Strategies of Personal Air Vehicle based on Demand Factors (수요요인을 반영한 개인용 항공기 개발전략 연구)

  • Byun, Sangkyu;Kang, Beom-Soo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.3
    • /
    • pp.15-23
    • /
    • 2021
  • Personal Air Vehicle is expected to be a promising solution to relieve traffic congestion using urban airspace. The development of related technologies such as materials or batteries has been accelerated. In addition, commercial transportation services are being prepared. When fierce competition begins in the PAV market, even technologically superior products will disappear without choices by consumers. Therefore, demand factors should be reflected in PAV development to enhance competitiveness. In the paper, values were estimated for the major technological attributes of PAV. Stated preference data were collected through a survey, and the conjoint method and ordered probit model were adopted. Thereafter, it was confirmed that the value would be high in the order of dual mode, drone-type appearance, and noise reduction. Some R&D strategies were proposed based on this.

Certification Criteria, Patent Analysis and Aerodynamic Analysis for a Roadable PAV Design (도로주행형 PAV 설계를 위한 인증기준, 특허 분석 및 공력해석)

  • Cha, Jae-Young;Hwang, Ho-Yon;Jeong, Han-Gyu;Kim, Seok-Beom;Ahn, Jon
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.1
    • /
    • pp.1-12
    • /
    • 2017
  • As the current ground transportation system becomes saturated, there is a need to develop a roadable personal air vehicle (PAV). Therefore, researches for PAV development and operation system development are being actively carried out in various countries around the world. PAV, the next generation transportation system, is a new concept of personal transportation that combines ground transportation, air traffic, and IT industry. Also, the development of PAV can solve the saturation of traffic congestion and shorten the travel time dramatically. In this study, we analyzed the certification criteria of FAR Part 23, which is going to be revised, and analyzed the patents and folding mechanism of Terrafugia Transition and Aeromobil 3.0, which are the most advanced of roadable PAV. Also, we used $OpenVSP^{(R)}$ for the reverse configuration design of the existing Terafugia transition and Aeromobile 3.0. Aerodynamic analyses were performed for the reverse configuration design using the $XFR5^{(R)}$ program.

Performance analysis of Coaxial Propeller for Multicopter Type PAV (Personal Air Vehicle) (멀티콥터형 PAV(Personal Air Vehicle)의 동축반전 프로펠러에 대한 성능해석)

  • Kim, Young Tae;Park, Chang Hwan;Kim, Hak Yoon
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.3
    • /
    • pp.56-63
    • /
    • 2019
  • Performance analyses were performed on a propeller developed for use in a PAV (Personal Air Vehicle) under 600 kg Maximum Take-Off Weight (MTOW). The actuator disc theory and CFD analyses were used to estimate the hovering time with regards to MTOW variation for a given battery weight. The interference induced power factor kint was introduced to account for the effect of flow interference between the propellers and to estimate the performance of counter-rotating propellers. The Maximum Figure of Merit (FM) value of the propeller pitch was determined and the design RPM range for the required power inversely obtained from the CFD results. Previous research indicate that the flight time of large multi-copter is limited by the available battery energy density. Similarly, the propeller pitch settings and spacing are important factors in reducing the kint value.

A Study on the Application of Human Factors to the Introduction of PAV & UAM

  • Ahn, Kyung Su;Jeong, Won Kyong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.4
    • /
    • pp.171-175
    • /
    • 2020
  • The present and future cities are expanding, and the noise and environmental pollution in cities are getting worse day by day, causing saturation of road and subway traffic. As a result, citizens are spending a great deal of time and money. The use of the sky as a measure to solve this problem has become a reality. However, airplanes that require airstrips and noisy helicopters are difficult to use in cities. As a solution, PAVs and UAMs that generate low noise and enable vertical takeoff and landing using electric energy, motor, hybrid, and hydrogen energy, are attracting attention, with its practicality being promoted in many countries. The development of urban environment and technology has led to the emergence of Personal Air Vehicle (PAV), Vertical Takeoff and Landing (eVTOL), and Urban Air Mobility (UAM) for shipping. Though currently at the level of testing, general commercialization of these air transport means is expected in the next five to fifteen years. This study suggests a plan on the application of human factors to the introduction of PAV and UAM.

A Study of Certification of Lightning Indirect Effects on Cable Harness in Personal Air Vehicles (PAV 케이블 하네스에 대한 낙뢰 간접 영향성 인증 기법에 관한 연구)

  • Jo, Jae-Hyeon;Kim, Yun-Gon;Park, Se-Woong;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.3
    • /
    • pp.251-262
    • /
    • 2021
  • The airworthiness certification of lightning indirect effects becomes an important issue in personal air vehicles (PAVs), which are being actively developed around the world. PAVs are very vulnerable to lightning strikes, because of miniaturization, use of the electric engines, composite materials, and application of unmanned navigation systems. In this study, we first examined various steps of certifications for lightning indirect effects shown in AC 20 136B issued by the Federal Aviation Administration (FAA). We then applied certification guidelines for equipment transient design level listed in RTCA DO 160G Section 22 to PAVs and investigated lightning transient environments inside the PAVs. We also analyzed the aircraft level tests specified in SAE ARP 5416A by using electromagnetic computational analysis software EMA3D. Finally, we analyzed the actual transient level for PAVs and derived the data necessary for conformity certification.

The Overseas Research Trends for the On Demand Mobility and Domestic Application Plan Using PAV (PAV를 활용한 공유형 항공 이동수단의 해외 연구 동향 및 국내 적용 방안)

  • Lim, Eunha;Hwang, Hoyon;Cha, Jaeyoung;Kim, Seokbeom;Park, Byungwoon
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.4
    • /
    • pp.313-324
    • /
    • 2017
  • At present, many countries around the world, as well as Korea, have faced serious social problems due to increased traffic congestion resulting in the social loss. As a result, there is an increasing demand for new transportation which is not exist. This is why many companies around the world are trying to solve this problem with transportation innovation through On Demand Mobility(ODM) which uses Personal Air Vehicle(PAV) that is operated on demand by customer rather than scheduled transportation. This study analyzed the current research trends of the On Demand Mobility projects of National Aeronautics and Space Administration (NASA), UBER, and AIRBUS. Also, this study presents the benefit of adopting this On Demand Mobility systems into Korea. Three commuting routes were set up in the metropolitan area in Korea, and the benefit of using the On Demand Mobility method was compared with the current public transportation and private car.

Initial Sizing of a Roadable PAV Considering Airfoil and Engine Types (익형과 엔진 종류를 고려한 도로주행형 PAV 초기 사이징)

  • Cha, Jae-Young;Hwang, Ho-Yon
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.1
    • /
    • pp.44-54
    • /
    • 2019
  • In many countries, there are needs of new transportations to replace ground congestions due to growing number of cars. In addition, the increase in the number of cars held by economic growth will further increase traffic congestion in the future. To overcome this problem, many researches have been performed for personal air vehicle (PAV). In this study, the wing loading and the power-to-weight ratio that are major design parameters for the sizing of roadable PAVs were calculated for different kinds of airfoil and engine types. I.e., in the sizing process, the study was conducted to determine the design point using the graphs of wing loading, power-to-weight ratio, brake horse power, and fuel efficiency for the given mission profiles considering domestic environments and the FAR PART 23 which is the GA class aircraft certification standard. As a result of sizing, using diesel engine require high maximum take-off weight, wing area, and power compared to gasoline engine due to more engine weight.

Constraint Analysis for the Sizing of Roadable PAV Considering Domestic Environments (국내환경을 고려한 도로주행형 PAV 사이징을 위한 구속조건 해석)

  • Cha, Jae-Young;Hwang, Ho-Yon;Lim, Eun-Ha;Kim, Seok-Beom
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.2
    • /
    • pp.111-122
    • /
    • 2018
  • At present, the ground transportation system is saturated in many countries including Korea. To overcome this problem, many researches of developing a roadable personal air vehicle (PAV) are being carried out to alleviate traffic congestion and to accomplish door-to-door mobility through three-dimensional traffic system. In this study, the thrust-to-weight ratio, the wing loading, and the power-to-weight ratio that are major design parameters for the sizing of roadable PAVs were calculated under the constraints of ground roll, climb rate, maximum cruise speed, service ceiling, stall speed. Also, in the sizing process, the study was conducted to determine the design point using the graphs of thrust-to-weight ratio, wing loading, power-to-weight ratio, and brake horse power for the mission profiles considering domestic environments and the FAR PART 23 which is the GA class aircraft certification standard.