• Title/Summary/Keyword: Peroxisome proliferator-activated receptor ${\gamma}2(PPAR{\gamma}2)$

Search Result 167, Processing Time 0.029 seconds

Processed Panax ginseng, sun ginseng, inhibits the differentiation and proliferation of 3T3-L1 preadipocytes and fat accumulation in Caenorhabditis elegans

  • Lee, Hyejin;Kim, Jinhee;Park, Jun Yeon;Kang, Ki Sung;Park, Joeng Hill;Hwang, Gwi Seo
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.257-267
    • /
    • 2017
  • Background: Heat-processed ginseng, sun ginseng (SG), has been reported to have improved therapeutic properties compared with raw forms, such as increased antidiabetic, anti-inflammatory, and antihyperglycemic effects. The aim of this study was to investigate the antiobesity effects of SG through the suppression of cell differentiation and proliferation of mouse 3T3-L1 preadipocyte cells and the lipid accumulation in Caenorhabditis elegans. Methods: To investigate the effect of SG on adipocyte differentiation, levels of stained intracellular lipid droplets were quantified by measuring the oil red O signal in the lipid extracts of cells on differentiation Day 7. To study the effect of SG on fat accumulation in C. elegans, L4 stage worms were cultured on an Escherichia coli OP50 diet supplemented with $10{\mu}g/mL$ of SG, followed by Nile red staining. To determine the effect of SG on gene expression of lipid and glucose metabolism-regulation molecules, messenger RNA (mRNA) levels of genes were analyzed by real-time reverse transcription-polymerase chain reaction analysis. In addition, the phosphorylation of Akt was examined by Western blotting. Results: SG suppressed the differentiation of 3T3-L1 cells stimulated by a mixture of 3-isobutyl-1-methylxanthine, dexamethasone, and insulin (MDI), and inhibited the proliferation of adipocytes during differentiation. Treatment of C. elegans with SG showed reductions in lipid accumulation by Nile red staining, thus directly demonstrating an antiobesity effect for SG. Furthermore, SG treatment down-regulated mRNA and protein expression levels of peroxisome proliferator-activated receptor subtype ${\gamma}$ ($PPAR{\gamma}$) and CCAAT/enhancer-binding protein-alpha ($C/EBP{\alpha}$) and decreased the mRNA level of sterol regulatory element-binding protein 1c in MDI-treated adipocytes in a dose-dependent manner. In differentiated 3T3-L1 cells, mRNA expression levels of lipid metabolism-regulating factors, such as amplifying mouse fatty acid-binding protein 2, leptin, lipoprotein lipase, fatty acid transporter protein 1, fatty acid synthase, and 3-hydroxy-3-methylglutaryl coenzyme A reductase, were increased, whereas that of the lipolytic enzyme carnitine palmitoyltransferase-1 was decreased. Our data demonstrate that SG inversely regulated the expression of these genes in differentiated adipocytes. SG induced increases in the mRNA expression of glycolytic enzymes such as glucokinase and pyruvate kinase, and a decrease in the mRNA level of the glycogenic enzyme phosphoenol pyruvate carboxylase. In addition, mRNA levels of the glucose transporters GLUT1, GLUT4, and insulin receptor substrate-1 were elevated by MDI stimulation, whereas SG dose-dependently inhibited the expression of these genes in differentiated adipocytes. SG also inhibited the phosphorylation of Akt (Ser473) at an early phase of MDI stimulation. Intracellular nitric oxide (NO) production and endothelial nitric oxide synthase mRNA levels were markedly decreased by MDI stimulation and recovered by SG treatment of adipocytes. Conclusion: Our results suggest that SG effectively inhibits adipocyte proliferation and differentiation through the downregulation of $PPAR{\gamma}$ and $C/EBP{\alpha}$, by suppressing Akt (Ser473) phosphorylation and enhancing NO production. These results provide strong evidence to support the development of SG for antiobesity treatment.

Gene Expression of Candidate Genes Involved in Fat Metabolism During In vitro Adipogenic Differentiation of Bovine Mesenchymal Stem Cell (Bovine Mesenchymal Stem Cell의 지방분화를 이용한 지방대사관련 후보 유전자의 발현분석)

  • Kim, Sung-Kon;Kim, Nam-Kuk;Yoon, Du-Hak;Kim, Tae-Hun;Yang, Boo-Keun;Lee, Hyun-Jeong
    • Journal of Animal Science and Technology
    • /
    • v.52 no.4
    • /
    • pp.265-270
    • /
    • 2010
  • Adipogenesis has been one of the most intensely studied models of cellular differentiation. During adipogenesis, differential expression of many adipogenesis related genes lead to profound changes in cellular, morphological, and physiological characteristics of the differentiating cells. The aim of the present study was to examine the expression levels of adipogenic candidate genes, cAMP early repressor (ICER), nephroblastoma over-expressed protein (NOV), heat shock protein beta 1 (HSPB1) and succinate dehydrogenase (SDH), during adipogenesis of bovine mesenchymal stem cells (BMSC). The BMSC were cultured in DMEM / low glucose medium with adipogenic inducers for 6 days and the expression of various candidate genes which seemed related to adipogenesis were measured by real-time PCR. This study showed that the expression of peroxisome proliferator activated receptor ${\gamma}$(PPAR${\gamma}$) and fatty acid binding protein 4 (FABP4) genes as adipogenic indicators were increased to 3.11 and 3.11 folds on day 6 than on day 0, respectively (p<0.05). To determine whether candidate genes were related to adipogenesis, the expression levels of ICER, NOV, HSPB1, and SDH genes were measured during adipogenesis in BMSC. Our results showed that the expression level of ICER gene was significantly increased to 4.12 folds (0.01729 vs. 0.07138; p<0.05), whereas NOV, HSPB1, and SDH genes were decreased to 2.89, 3.18 and 2.36 folds, respectively, on day 6 when compared to day 0. These results suggest that these candidate genes have stimulatory or inhibitory effects on adipogenesis in BMSC, indicating that these genes may be directly or indirectly related to the adipogenic event of adipose precursor cells.

Allium hookeri Extract Improves Type 2 Diabetes Mellitus in C57BL/KSJ Db/db Obese Mouse via Regulation of Hepatic Lipogenesis and Glucose Metabolism (삼채 추출물의 인슐린 저항성 개선 효과 및 기전 탐색)

  • Kim, Ji-Soo;Heo, Jin-Sun;Choi, Jong-Won;Kim, Gun-Do;Sohn, Kie-Ho
    • Journal of Life Science
    • /
    • v.25 no.10
    • /
    • pp.1081-1090
    • /
    • 2015
  • Diabetes has been one of major health risks in industrialized countries. Allium hookeri is a wild herb distributed in India and Myanmar. The root of the plant has been used as food and medicine in Southeast Asia. We investigated Allium hookeri extract improves type 2 diabetes mellitus in C57BL/KSJ db/db obese mouse. C57BL/KSJ db/db obese mouse arise out of Type 2 diabetes and we treated Allium hookeri methanol extract 400 mg/kg (AH 400), 800 mg/kg (AH 800), positive control group (thiazolidinedine;TZDs) were administered orally for 8weeks. AH treated group normalized lipid enzyme system (triglyceride, total cholesterol, HDL-cholesterol and LDL-cholesterol) and serum glucose, HbA1c and plasma insulin level. AH treated group recovered β-cell damage by hyperglycemia and fatty liver disease. AH treated group significantly up regulated expression of Peroxisome proliferator-activated receptor gamma (PPAR-γ), pyruvate dehydrogenase kinase4 (PDK4), Sterol regulatory element-binding protein 1c (SREBP 1) and fork head box O1 (FOX 01) proteins in C57BL/KSJ db/db obese mouse liver. And we found that AH treated group decreased hepatic malondialdehyde formation in C57BL/KSJ db/db obese mouse liver. These results indicate that Allium hookeri methanol extract might be a potential anti-diabetic agent and could be useful in the treatment of type 2 diabetes mellitus.

Anti-adipogenic Activity of Cortex ulmi pumilae Extract in 3T3-L1 Preadipocytes (유근피 추출물의 3T3-L1지방전구세포의 분화 억제 효능에 관한 연구)

  • Jeong, Hyun Young;Jin, Soojung;Nam, Soo Wan;Hyun, Sook Kyung;Kim, Sung Gu;Kim, Byung Woo;Kwon, Hyun Ju
    • Journal of Life Science
    • /
    • v.24 no.2
    • /
    • pp.137-147
    • /
    • 2014
  • Cortex ulmi pumilae, the cortex of Ulmus davidiana var. japonica, has been used in traditional folk medicine for its anti-inflammatory effect. Although its various bioactivities such as anti-inflammatory, anti-microbial, and anti-cancer, have been reported, the anti-adipogenic activity of cortex ulmi pumilae remains unclarified. In the present study, we investigated the effect of cortex ulmi pumilae extract on adipocyte differentiation in 3T3-L1 preadipocytes. Treatment with cortex ulmi pumilae extract significantly reduced the formation of lipid droplets and triglyceride content in a dose-dependent manner; this is associated with an inhibition of the adipogenic transcription factors, CCAAT/enhancer binding protein ${\alpha}$ ($C/EBP{\alpha}$), $C/EBP{\beta}$, and peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$). In addition, cortex ulmi pumilae extract treatment during the early stage of adipogenesis showed more efficient anti-adipogenic activity than treatment during other stages of adipogenesis. Cortex ulmi pumilae extract also inhibited cell proliferation and induced G1 arrest of 3T3-L1 cells in the early stage of adipogenesis. This was associated with upregulated expression of Cdk inhibitor p21 and downregulated expression of cyclin E and phospho-Rb, indicating that cortex ulmi pumilae extract blocks mitotic clonal expansion by cell cycle regulation. Taken together, these results suggest that cortex ulmi pumilae extract possesses anti-adipogenic activity through the inhibition of adipocyte differentiation by blocking mitotic clonal expansion.

Anti-obese Effects and Signaling Mechanisms of Chaenomeles sinensis extracts in 3T3-L1 Preadipocytes and Obese Mice Fed a High-fat Diet (3T3L-1 지방전구세포와 고지방식이로 유도된 비만 마우스 모델에서 모과 추출물의 항비만 효과와 억제 기전)

  • Kim, Da-Hye;Kwon, Bora;Kim, Sang Jun;Kim, HongJun;Jeong, Seung-Il;Yu, Kang-Yeol;Kim, Seon-Young
    • Herbal Formula Science
    • /
    • v.25 no.4
    • /
    • pp.457-469
    • /
    • 2017
  • Obesity is one of the most serious health problem because it induced numerous metabolic syndrome and increases the incidence of various disease, including diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. In 3T3-L1 adipocytes, increases in reactive oxygens species (ROS) occur with lipid accumulation. NADPH oxidase, producing superoxide anion, may contribute to the development of obesity-associated insulin resistance and type 2 diabetes. In this study, we elucidated the effect of Chaenomeles sinensis koehne extract (CSE) against the development of obesity and the inhibition mechanisms in 3T3-L1 preadiocytes. CSE decreased triglyceride content and inhibited the expression of adipogenic transcription factors including peroxisome proliferator-activated receptor $(PPAR){\gamma}$, CCAT/enhancer binding protein $(C/EBP){\alpha}$ and sterol regulatory element-binding protein (SREBP-1). In addition, CSE highly increased antioxidant activity in a dose-dependent manner. CSE remarkably reduced intracellular ROS increase and NAD(P)H oxidase activity, NOX1, NOX4, Rac1 protein expression, and phosphorylation of p47phox and p67phox We also studied the effect of CSE on weight gain induced by high-fat diet. The oral treatment of CSE (500 mg/kg, body weight) in diet-induced obese (DIO) mice showed decrease in triglyceride and adipocyte size. Therefore, these results indicate that the effect of CSE on anti-obese effects, adipocyte differentiation and reducing triglyceride contents as well as adipocyte size in obese mice, may be associated with inhibition of NAD(P)H oxidase-induced ROS production and adipose transcription factors. These results showed the potential to inhibit the obesity by CSE treatment through controlling the activation of NAD(P)H oxidase in vitro and in vivo obese model.

Leaves of Cudrania tricuspidata on the Shoot Positional Sequence Show Different Inhibition of Adipogenesis Activity in 3T3-L1 Cells (꾸지뽕 신초 엽위별 잎 추출물의 항비만 효과)

  • Park, Ju Ha;Guo, Lu;Kang, He Mi;Son, Beung Gu;Kang, Jum Soon;Lee, Yong Jae;Park, Young Hoon;Je, Byoung Il;Choi, Young Whan
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.209-218
    • /
    • 2021
  • This study aimed to evaluate the anti-obesity effects of Cudrania tricuspidata leaf extract in the order of leaf development on the shoot (L0, L1, L2, L3, L4, and L5). The leaves at the apex of a Cudrania tricuspidata shoot were classified as L0; the next leaves of the apex were classified as L1, L2, L3, and L4 from highest to lowest; and the lowest leaf was classified as L5. A series of 70% ethyl alcohol leaf extracts were screened for the inhibitory effects of adipogenesis in 3T3-L1 preadipocytes. We found that the apical leaf extract of Cudrania tricuspidata (CTL0) was the most effective. Next, a study was conducted on the inhibitory action mechanism of CTL0. Treatment with CTL0 significantly suppressed the differentiation of 3T3-L1 preadipocytes in a dose-dependent manner, as confirmed by the decrease in lipid droplet content observed with Oil Red O staining. Treatment with 12.5 ㎍/ml, 25 ㎍/ml, and 50 ㎍/ml of CTL0 significantly reduced the lipid droplet content. Glucose and cellular triglyceride concentrations were reduced in the 3T3-L1 cells on the CTL0-treated medium compared to the differentiation medium (DM control, DMEM + insulin + dexamethasone + rosiglitazone). Compared with DM, CTL0 significantly inhibited the expression of key pro-adipogenic transcription factors, including peroxisome proliferator-activated receptor γ (PPARγ), LPL, A-FABP, and Glut4. These findings show that CTL0 extract has potent anti-obesity effects.

Inhibitory effect of water-soluble mulberry leaf extract on hepatic lipid accumulation in high-fat diet-fed rats via modulation of hepatic microRNA-221/222 expression and inflammation (고지방식이 급여 쥐에서 수용성 뽕나무 잎 추출물의 간 microRNA-221/222 발현 및 염증 조절을 통한 간 지질 축적억제 효과)

  • Lee, Mak-Soon;Kim, Cheamin;Ko, Hyunmi;Kim, Yangha
    • Journal of Nutrition and Health
    • /
    • v.55 no.2
    • /
    • pp.227-239
    • /
    • 2022
  • Purpose: This study investigated the effects of water-soluble mulberry leaf extract (ME) on hepatic lipid accumulation in high-fat diet-fed rats via the regulation of hepatic microRNA (miR)-221/222 and inflammation. Methods: Male Sprague-Dawley rats (4 weeks old) were randomly divided into 3 groups (n = 7 each) and fed with 10 kcal% low-fat diet (LF), 45 kcal% high-fat diet (HF), or HF + 0.8% ME for 14 weeks. Lipid profiles and cytokine levels of the liver and serum were measured using commercial enzymatic colorimetric and enzyme-linked immunosorbent assay, respectively. The messenger RNA (mRNA) and miR levels in liver tissue were assayed by real-time quantitative reverse-transcription polymerase chain reaction. Results: Supplementation of ME reduces body weight and improves the liver and serum lipid profiles as compared to the HF group. The mRNA levels of hepatic peroxisome proliferator-activated receptor-gamma, sterol regulatory element binding protein-1c, fatty acid synthase, and fatty acid translocase, which are genes involved in lipid metabolism, were significantly downregulated in the ME group compared to the HF group. In contrast, the mRNA level of hepatic carnitine palmitoyl transferase-1 (involved in fatty acid oxidation) was upregulated by ME supplementation. Furthermore, administration of ME significantly downregulated the mRNA levels of inflammatory mediators such as hepatic tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), monocyte chemoattractant protein-1, and inducible nitric oxide synthase. The serum levels of TNF-α, IL-6, and nitric oxide were also significantly reduced in ME group compared to the HF group. Expression of hepatic miR-221 and miR-222, which increase in the inflammatory state of the liver, were also significantly inhibited in the ME group compared to the HF group. Conclusion: These results indicate that ME has the potential to improve hepatic lipid accumulation in high-fat diet-fed rats via modulation of inflammatory mediators and hepatic miR-221/222 expressions.