• Title/Summary/Keyword: Peroxidase activity

Search Result 1,239, Processing Time 0.034 seconds

Essential Cysteine Residues of Yeast Thioredoxin 2 for an electron donor to Thioredoxin Peroxidases

  • Lee, Song-Mi;Kim, Kang-Hwa;Choi, Won-Ki
    • BMB Reports
    • /
    • v.34 no.2
    • /
    • pp.139-143
    • /
    • 2001
  • Thioredoxin (Trx) is a redox protein possessing conserved sequence Cys-Gly-Pro-Cys in ail organisms. Trx acts as an electron donor of many proteins including thioredoxin peroxidase (TPx). Yeast Trx 2 has two redox active cysteine residues at positions 31 and 34. To investigate the redox activity of each cysteine, we generated mutants C31S, C34S, and C31S/C34S using site directed mutagenesis and examined the redox activity of Trx variants as an electron donor for yeast TPx enzymes. None of the three Cysmutated Trx proteins was active as a redox protein in the 5', 5'-dithiobis-(2-dinitrobenzoic acid) reduction under the condition of the presence of NADPH and thioredoxin reductase, and in the thioredoxin dependent peroxidase activity of yeast TPx II. C34S enhanced the glutamine synthetase protection activity of yeast TPx I, even though 100 times more protein was needed to exhibit the same activity to WT. The formation of a mixed disulfide intermediate between Trx and TPx II subunits was analyzed by SDS-PAGE. The mixed dieter form of TPx II was found only for C34S. These results suggest that Cys-31 more effectively acts as an electron donor for TPx enzymes.

  • PDF

Dietary Salmonella lysate affect on the antioxidant system(freshness) of broiler meats during 4$^{\circ}$C refrigeration (Salmonella lysate 첨가 사료가 저장중 계육 항산화계(신선도)에 미치는 영향)

  • Lee, Beom-Gyu;Im, Jin-Taek;Park, In-Gyeong;Choe, Do-Yeol;Choe, Jun-Yeong;Go, Tae-Song
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2006.11a
    • /
    • pp.60-61
    • /
    • 2006
  • Effect of dietary salmonella lysate in broiler chicks inoculated with Salmonella typhimurium on the antioxidant system(freshness) of broiler meats during 4$^{\circ}$C refrigeration was investigated. In Pectoral and leg muscle, regardless experimental diets, as the refrigeration day passed, CuZnSOD activity decreased gradually, while at 7d MnSOD activity and peroxide level raised and then lowered at 14d. MnSOD and peroxidase activity, however, had differed according to experimental diets. The results indicated that antioxidant system of broiler meats will be changed according to experimental diets(nutrients). As the CuZnSOD, MnSOD and peroxidase activity are responsible for proteolysis of muscle protein, it was concluded that change of antioxidant system during 4$^{\circ}$C storage explain the biological activity(freshness) of broiler meats.

  • PDF

Influence of Gami-oryungsan on bromobenzene-induced liver injury in experimental animal (Bromobenzene독성(毒性)에 의한 간기능손상(肝機能損傷)에 미치는 가미오령산의 영향(影響))

  • Kim, Jong-Dae
    • The Journal of Internal Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.108-115
    • /
    • 2000
  • Objective : To investigate the hepatoprotective effects of Gami-oryungsan on the liver damage induced by bromobenzene. Method : The development of fibrosis and acute liver injury was examined by the chemical analysis of AST, AL T, ${\gamma}$-GTP . and epoxide hydrolase glutathione S-transferase glutathione peroxidase enzyme activity, lipidoperoxide levels, glutathione levels were measured and oberved. Results : The increasing levels of lipidoperoxide was decreased proportionally according to dose of extract GO. Epoxide hydrolase glutathioneS-transferase glutathione peroxidase enzyme activity highly increased in GO pre-acupunctured group compared with the group treated with only bromobenzene. The increase of serum AST, AL T, ${\gamma}$-GTP enzyme activity of mice by bromobenzene was inhibited by the administration of GO. Lipidoperoxide levels in rat's liver decreased compared to the case of bromobenzene-treated group. The levels of Glutathione decreased by bromo benzene were increased highly in GO pre-acupunctured group. Conclusion : These results suggest that GO extract recovers the damage of liver due to bromobenzene intoxication by decreasing the lipid peroxidation AST AL T ${\gamma}$-GTP enzyme activity and increasing epoxide hydrolase glutathioneS-transferase glutathione peroxidase enzyme activity, glutathione levels.

  • PDF

Comparison of Superoxide Dismutase and Peroxidase Activities in Rice Varieties

  • Chung, Ill-Min;Kim, Kwang-Ho;Ahn, Joung-Kuk;Lee, Jin-Ohk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.5
    • /
    • pp.277-281
    • /
    • 2000
  • Fifty-four Korean native and 28 foreign varieties harvested in 1998 and 1999 were examined for superoxide dismutase (SOD) and peroxidase (POD) activities. The SOD and POD activities of leaves extracts in Korean native and foreign rice varieties showed variation at the heading stage. The activities of SOD and POD changed with growth stage. In comparison of storage duration, the SOD and POD activities of the extract from three months stored seeds in Korean native (CV=53.3%) and foreign rice (CV=57.9%) varieties were higher than that of stored rices for a year in seed extracts although the activities among varieties did not show significant variation. Also, the averaged activity of foreign rice varieties (SOD=12.9%) was relatively higher than that of korean native rice varieties (SOD=10.7%). The test of activity at the enzymatic level related to antioxidative activity suggests that the rice varieties with higher antioxidative potentials can be developed and also may provide information with rice breeder to breed rice variety with a high antioxidative activity.

  • PDF

The mycelial growth and ligninolytic enzyme activity of cauliflower mushroom (Sparassis latifolia)

  • Sou, Hong-Duck;Ryoo, Rhim;Ka, Kang-Hyeon;Park, Hyun
    • Forest Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.158-163
    • /
    • 2017
  • We examined the activities of lignin-degrading enzymes of the mycelium of cauliflower mushroom (Sparassis latifolia). Three different strains of S. latifolia collected from several sites in Korea and one crossbred strain were cultured on potato dextrose broth (PDB) and Kirk's medium in order to study the activities of their ligninolytic enzymes. Mycelial growth reached maximum levels between 14 and 21 days after inoculation and pH increased by 0.12 units over 35 days. Laccase activity began increasing after 14 days on both types of media. Manganese peroxidase (MnP) activity followed a trend similar to that of laccase on Kirk's medium, but not on PDB. The activity of lignin peroxidase (LiP) differed from that of other enzymes; its activity decreased by half after 14 days on PDB but remained constant on Kirk's medium over 35 days. The total protein concentration increased considerably after 14 days and peaked at 21 days on PDB. A similar maximum was attained on Kirk's medium. In contrast, the residual glucose increased rapidly at 14 days on Kirk's medium, while increasing gradually up to 28 days on PDB. This study indicates that S. latifolia is more similar to white rot fungi than to other brown rot fungi.

Construction and Characterization of Vitreoscilla Hemoglobin (VHb) with Enhanced Peroxidase Activity for Efficient Degradation of Textile Dye

  • Zhang, Zidong;Li, Wei;Li, Haichao;Zhang, Jing;Zhang, Yuebin;Cao, Yufeng;Ma, Jianzhang;Li, Zhengqiang
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.9
    • /
    • pp.1433-1441
    • /
    • 2015
  • Pollution resulting from the discharge of textile dyes into water systems has become a major global concern. Because peroxidases are known for their ability to decolorize and detoxify textile dyes, the peroxidase activity of Vitreoscilla hemoglobin (VHb) has recently been studied. It is found that VHb and variants of this enzyme show great promise for enzymatic decolorization of dyes and may play a role in achieving their successful removal from industrial wastewater. The level of VHb peroxidase activity correlates with two amino acid residues present within the conserved distal pocket, at positions 53 and 54. In this work, sitedirected mutagenesis of these residues was performed and resulted in improved VHb peroxidase activity. The double mutant, Q53H/P54C, shows the highest dye decolorization and removal efficiency, with 70% removal efficiency within 5 min. UV spectral studies of Q53H/P54C reveals a more compact structure and an altered porphyrin environment (λSoret = 413 nm) relative to that of wild-type VHb (λSoret = 406), and differential scanning calorimetry data indicate that the VHb variant protein structure is more stable. In addition, circular dichroism spectroscopic studies indicate that this variant's increased protein structural stability is due to an increase in helical structure, as deduced from the melting temperature, which is higher than 90℃. Therefore, the VHb variant Q53H/P54C shows promise as an excellent peroxidase, with excellent dye decolorization activity and a more stable structure than wild-type VHb under high-temperature conditions.

Activities of Oxidative Enzymes Related with Oxygen Tolerance in Bifidobacterium sp.

  • Shin, Soon-Young;Park, Jong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.5
    • /
    • pp.356-359
    • /
    • 1997
  • To study the relationship between oxygen tolerance and enzyme activity in the oxygen metabolism of bifidobacteria, the activities of catalase, superoxide dismutase (SOD), NADH oxidase and NADH peroxidase from six typical bifidobacteria and other bacteria were assayed by spectrophotometry. Catalase activity was hardly detected in any of the bifidobacteria tested. SOD activity was detected in every species including the Clostridium species. In particular SOD activity was notably high in the aerosensitive Bifidobacterium adolescentis. This fact indicates that SOD activity is not a critical factor to ensure aerotolerance. Aerosensitive B. adolescentis showed very low NADH oxidative enzyme activity whereas other aerotolerant bifidobacteria exhibited considerable activity for the enzymes. It seems that detoxification of $H_2O_2$ by NADH oxidative enzymes might be an important factor in improving for aerotolerant bifidobacteria survival rates in an oxygen environment.

  • PDF

Purification and Some Properties of Peroxidase from the Fruit Malus sieboldii (Regel) Rehder (아그배 Peroxidase의 정제 및 특성)

  • Yang, Hee-Cheon;Son, Hee-Suk;Shim, Kyu-Kwang;Oh, Chan-Ho;Choi, Dong-Seong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.1
    • /
    • pp.84-90
    • /
    • 1992
  • Peroxidase in the fruit of Malus sieboldii (Regel) Rehder was partially purified by DEAE-cellulose column chromatography and Ultro-AcA 54 gel filtration. The optimum pH of peroxidase was 4.5 and optimum temperature was $80^{\circ}C$. The enzyme was stable at pH 5.0 and below $30^{\circ}C$, and inactivated by heat treatment at $80^{\circ}C$ for 15min. In the presence of 30mM $H_{2}O_2$ Km value on o-phenylenediamine as substrate was 1.65mM, and in the presence of 10mM o-phenylenediamine Km value on $H_{2}O_2$ was 7.97mM. L-Ascorbic acid and sodium L-ascorbate greatly inhibited the enzyme activity and among several metal ions $Mn^{2+}$ only increased the activity at 5mM.

  • PDF

Pigment Degradation by Lignin Peroxidase Covalently Immobilized on Magnetic Particles

  • Park, Jin-Won
    • Clean Technology
    • /
    • v.23 no.4
    • /
    • pp.408-412
    • /
    • 2017
  • Pigment red 53:1 is a dye used in various products as a component of the inks, suspected of being carcinogenic. Thus, the environmental and occupational issues related to it are important. The enzyme-based approach with reusability has advantages to consume less energy and generate less harsh side- products compared to the conventional strategies including separations, microbe, and electrochemical treatment. The degradation of Pigment red 53:1 by the lignin peroxidase immobilized on the surface of magnetic particles has been studied. The immobilization of the peroxidase was conducted on magnetic particle surface with the treatment of polyethyleneimine, glutaraldehyde, and the peroxidase, in sequence. The immobilization was confirmed using X-ray photon spectroscopy. The absorbance peak of the pigment was monitored at 495 nm of UV/Vis spectrum with respect to time to calculate the catalytic activities of the pigment for the immobilized lignin peroxidase. For the comparison, the absorbance of the lignin peroxidase free in solution was also monitored. The catalytic rate constant values for the free lignin peroxidases and the immobilized those were 0.51 and $0.34min^{-1}$, respectively. The reusable activity for the immobilized lignin peroxidase was kept to 92% after 10 cycles. The stabilities for heat and storage were also investigated for both cases.

Production of Lignin-Degrading Enzymes by White Rot Fungi Immobilized in a Rotating Bioreactor (회전생물반응기에 고정화된 백색부후균에 의한 리그닌 분해효소의 생산)

  • 조무환;류원률
    • KSBB Journal
    • /
    • v.17 no.1
    • /
    • pp.14-19
    • /
    • 2002
  • The objective of this study is to investigate optimum condition for lignin peroxidase production by white rot fungi Phanerochaete chysosporium IFO 31249 immobilized in a rotating bioreactor. The maximum lignin peroxidase activity of batch culture in rotating bioreactor was 300 U/L. The optimum rotating speed and packing ratio of support for lignin peroxidase production in a rotating bioreactor were 1 rpm and 20%, respectively. The optimum concentration of $MnSO_4$$\cdot$$H_2O$ for manganese-dependent peroxidase production in a rotating bioreactor was 50 ppm. The sufficient supply of oxygen was the most important factor to achieve maximum lignin peroxidase production. It was possible to produce lignin peroxidase (LiP) and manganese-dependent peroxidase (MnP) for at least 3 times successive repeated-batch cultures, respectively.