Browse > Article
http://dx.doi.org/10.4014/jmb.1411.11001

Construction and Characterization of Vitreoscilla Hemoglobin (VHb) with Enhanced Peroxidase Activity for Efficient Degradation of Textile Dye  

Zhang, Zidong (College of Wildlife Resource, Northeast Forestry University)
Li, Wei (Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, College of Life Science, Jilin University)
Li, Haichao (Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, College of Life Science, Jilin University)
Zhang, Jing (Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, College of Life Science, Jilin University)
Zhang, Yuebin (Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, College of Life Science, Jilin University)
Cao, Yufeng (Fundamental Nursing Department, Chang Chun Medical School)
Ma, Jianzhang (College of Wildlife Resource, Northeast Forestry University)
Li, Zhengqiang (Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, College of Life Science, Jilin University)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.9, 2015 , pp. 1433-1441 More about this Journal
Abstract
Pollution resulting from the discharge of textile dyes into water systems has become a major global concern. Because peroxidases are known for their ability to decolorize and detoxify textile dyes, the peroxidase activity of Vitreoscilla hemoglobin (VHb) has recently been studied. It is found that VHb and variants of this enzyme show great promise for enzymatic decolorization of dyes and may play a role in achieving their successful removal from industrial wastewater. The level of VHb peroxidase activity correlates with two amino acid residues present within the conserved distal pocket, at positions 53 and 54. In this work, sitedirected mutagenesis of these residues was performed and resulted in improved VHb peroxidase activity. The double mutant, Q53H/P54C, shows the highest dye decolorization and removal efficiency, with 70% removal efficiency within 5 min. UV spectral studies of Q53H/P54C reveals a more compact structure and an altered porphyrin environment (λSoret = 413 nm) relative to that of wild-type VHb (λSoret = 406), and differential scanning calorimetry data indicate that the VHb variant protein structure is more stable. In addition, circular dichroism spectroscopic studies indicate that this variant's increased protein structural stability is due to an increase in helical structure, as deduced from the melting temperature, which is higher than 90℃. Therefore, the VHb variant Q53H/P54C shows promise as an excellent peroxidase, with excellent dye decolorization activity and a more stable structure than wild-type VHb under high-temperature conditions.
Keywords
Vitreoscilla hemoglobin; peroxidase activity; dye; decolorization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Isarankura-Na-Ayudhya C, Panpumthong P, Tangkosakul T, Boonpangrak S, Prachayasittikul V. 2008. Shedding light on the role of Vitreoscilla hemoglobin on cellular catabolic regulation by proteomic analysis. Int. J. Biol. Sci. 4: 71-80.   DOI
2 Isarankura-Na-Ayudhya C, Tansila N, Worachartcheewan A, Bülow L, Prachayasittikul V. 2010. Biochemical and cellular investigation of Vitreoscilla hemoglobin (VHb) variants possessing efficient peroxidase activity. J. Microbiol. Biotechnol. 20: 532-541.
3 Jamal F, Qidwai T, Pandey PK, Singh D. 2011. Catalytic potential of cauliflower (Brassica oleracea) bud peroxidase in decolorization of synthetic recalcitrant dyes using redox mediator. Catal. Commun. 15: 93-98.   DOI
4 Kaur R, Pathania R, Sharma V, Mande SC, Dikshit KL. 2002. Chimeric Vitreoscilla hemoglobin (VHb) carrying a flavoreductase domain relieves nitrosative stress in Escherichia coli: new insight into the functional role of VHb. Appl. Environ. Microbiol. 68: 152-160.   DOI
5 Andersson CI, Arfvidsson C, Kallio PT, Wahlund K-G, Bülow L. 2003. Enhanced ribosome and tRNA contents in Escherichia coli expressing a truncated Vitreoscilla hemoglobin mutant analyzed by flow field-flow fractionation. Biotechnol. Lett. 25: 1499-1504.   DOI
6 Bhunia A, Durani S, Wangikar PP. 2001. Horseradish peroxidase catalyzed degradation of industrially important dyes. Biotechnol. Bioeng. 72: 562-567.   DOI
7 Bolognesi M, Boffi A, Coletta M, Mozzarelli A, Pesce A, Tarricone C, Ascenzi P. 1999. Anticooperative ligand binding properties of recombinant ferric Vitreoscilla homodimeric hemoglobin: a thermodynamic, kinetic and Xray crystallographic study. J. Mol. Biol. 291: 637-650.   DOI
8 Cenens J, Schoonheydt R. 1988. Visible spectroscopy of methylene blue on hectorite, laponite B, and barasym in aqueous suspension. Clays Clay Miner. 36: 214-224.   DOI
9 Chivukula M, Spadaro JT, Renganathan V. 1995. Lignin peroxidase-catalyzed oxidation of sulfonated azo dyes generates novel sulfophenyl hydroperoxides. Biochemistry 34: 7765-7772.   DOI
10 Dec J, Bollag JM. 1994. Use of plant material for the decontamination of water polluted with phenols. Biotechnol. Bioeng. 44: 1132-1139.   DOI
11 Dunford H, Stillman J. 1976. On the function and mechanism of action of peroxidases. Coord. Chem. Rev. 19: 187-251.   DOI
12 Veitch NC. 2004. Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65: 249-259.   DOI
13 Tarricone C, Galizzi A, Coda A, Ascenzi P, Bolognesi M. 1997. Unusual structure of the oxygen-binding site in the dimeric bacterial hemoglobin from Vitreoscilla sp. Structure 5: 497-507.   DOI
14 Tauber MM, Gübitz GM, Rehorek A. 2008. Degradation of azo dyes by oxidative processes – Laccase and ultrasound treatment. Bioresour. Technol. 99: 4213-4220.   DOI
15 Ulson de Souza SMAG, Forgiarini E, Ulson de Souza AA. 2007. Toxicity of textile dyes and their degradation by the enzyme horseradish peroxidase (HRP). J. Hazard. Mater. 147: 1073-1078.   DOI
16 Wesenberg D, Kyriakides I, Agathos SN. 2003. White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol. Adv. 22: 161-187.   DOI
17 Wakabayashi S, Matsubara H, Webster DA. 1986. Primary sequence of a dimeric bacterial haemoglobin from Vitreoscilla. Nature 322: 481-483.   DOI
18 Webster DA, Liu CY. 1974. Reduced nicotinamide adenine dinucleotide cytochrome o reductase associated with cytochrome o purified from Vitreoscilla: evidence for an intermediate oxygenated form of cytochrome o. J. Biol. Chem. 249: 4257-4260.
19 Wei X-X, Chen G-Q. 2008. Applications of the VHb gene vgb for improved microbial fermentation processes. Methods Enzymol. 436: 273-287.   DOI
20 Zhang L, Li Y, Wang Z, Xia Y, Chen W, Tang K. 2007. Recent developments and future prospects of Vitreoscilla hemoglobin application in metabolic engineering. Biotechnol. Adv. 25: 123-136.   DOI
21 Rinas U, Bailey JE. 1993. Overexpression of bacterial hemoglobin causes incorporation of pre-beta-lactamase into cytoplasmic inclusion bodies. Appl. Environ. Microbiol. 59: 561-566.
22 Robinson T, McMullan G, Marchant R, Nigam P. 2001. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 77: 247-255.   DOI
23 Roos V, Andersson CI, Arfvidsson C, Wahlund KG, Bülow L. 2002. Expression of double Vitreoscilla hemoglobin enhances growth and alters ribosome and tRNA levels in Escherichia coli. Biotechnol. Progr. 18: 652-656.   DOI
24 Sakuyama H, Endo Y, Fujimoto K, Hatana Y. 2003. Oxidative degradation of alkylphenols by horseradish peroxidase. J. Biosci. Bioeng. 96: 227-231.   DOI
25 Sturtevant JM. 1987. Biochemical applications of differential scanning calorimetry. Annu. Rev. Phys. Chem. 38: 463-488.   DOI
26 Shaffiqu T, Roy JJ, Nair RA, Abraham TE. 2002. Degradation of textile dyes mediated by plant peroxidases. Appl. Biochem. Biotechnol. 102: 315-326.   DOI
27 Shedbalkar U, Dhanve R, Jadhav J. 2008. Biodegradation of triphenylmethane dye cotton blue by Penicillium ochrochloron MTCC 517. J. Hazard. Mater. 157: 472-479.   DOI
28 Smulevich G, Feis A, Focardi C, Tams J, Welinder KG. 1994. Resonance Raman study of the active site of Coprinus cinereus peroxidase. Biochemistry 33: 15425-15432.   DOI
29 Suwanwong Y, Kvist M, Isarankura-Na-Ayudhya C, Tansila N, Bulow L, Prachayasittikul V. 2006. Chimeric antibodybinding Vitreoscilla hemoglobin (VHb) mediates redoxcatalysis reaction: new insight into the functional role of VHb. Int. J. Biol. Sci. 2: 208-215.   DOI
30 Masuda M, Sakurai A, Sakakibara M. 2001. Effect of reaction conditions on phenol removal by polymerization and precipitation using Coprinus cinereus peroxidase. Enzyme Microb. Technol. 28: 295-300.   DOI
31 Matsui T, Ozaki S-I, Liong E, Phillips GN, Watanabe Y. 1999. Effects of the location of distal histidine in the reaction of myoglobin with hydrogen peroxide. J. Biol. Chem. 274: 2838-2844.   DOI
32 Matto M, Husain Q. 2009. Decolorization of direct dyes by immobilized turnip peroxidase in batch and continuous processes. Ecotox. Environ. Safe. 72: 965-971.   DOI
33 Mohan SV, Prasad KK, Rao NC, Sarma P. 2005. Acid azo dye degradation by free and immobilized horseradish peroxidase (HRP) catalyzed process. Chemosphere 58: 1097-1105.   DOI
34 Privalov PL, Potekhin SA. 1986. Scanning microcalorimetry in studying temperature-induced changes in proteins. Methods Enzymol. 131: 4-51.   DOI
35 Nagano N, Ota M, Nishikawa K. 1999. Strong hydrophobic nature of cysteine residues in proteins. FEBS Lett. 458: 69-71.   DOI
36 Novotný Č, Svobodová K, Kasinath A, Erbanová P. 2004. Biodegradation of synthetic dyes by Irpex lacteus under various growth conditions. Int. Biodeterior. Biodegradation 54: 215-223.   DOI
37 Nozaki K, Beh CH, Mizuno M, Isobe T, Shiroishi M, Kanda T, Amano Y. 2008. Screening and investigation of dye decolorization activities of basidiomycetes. J. Biosci. Bioeng. 105: 69-72.   DOI
38 Ramandeep, Hwang KW, Raje M, Kim K-J, Stark BC, Dikshit KL, Webster DA. 2001. Vitreoscilla hemoglobin: intracellular localization and binding to membranes. J. Biol. Chem. 276: 24781-24789.   DOI
39 Khosla C, Curtis JE, DeModena J, Rinas U, Bailey JE. 1990. Expression of intracellular hemoglobin improves protein synthesis in oxygen-limited Escherichia coli. Nat. Biotechnol. 8: 849-853.   DOI
40 Knutson K, Kirzan S, Ragauskas A. 2005. Enzymatic biobleaching of two recalcitrant paper dyes with horseradish and soybean peroxidase. Biotechnol. Lett. 27: 753-758.   DOI
41 Kvist M, Ryabova ES, Nordlander E, Bülow L. 2007. An investigation of the peroxidase activity of Vitreoscilla hemoglobin. J. Biol. Inorg. Chem. 12: 324-334.   DOI
42 Li W, Zhang Y, Xu H, Wu L, Cao Y, Zhao H, Li Z. 2013. pH-induced quaternary assembly of Vitreoscilla hemoglobin: the monomer exhibits better peroxidase activity. Biochim. Biophys. Acta 1834: 2124-2132.   DOI
43 Liu W, Kumar J, Tripathy S, Senecal KJ, Samuelson L. 1999. Enzymatically synthesized conducting polyaniline. J. Am. Chem. Soc. 121: 71-78.   DOI
44 Liu CY, Webster DA. 1974. Spectral characteristics and interconversions of the reduced, oxidized, and oxygenated forms of purified cytochrome o. J. Biol. Chem. 249: 4261-4266.
45 Liu JZ, Wang TL, Ji LN. 2006. Enhanced dye decolorization efficiency by citraconic anhydride-modified horseradish peroxidase. J. Mol. Catal. B Enzym. 41: 81-86.   DOI
46 Keharia H, Madamwar D. 2003. Bioremediation concepts for treatment of dye containing wastewater: a review. Indian J. Exp. Biol. 41: 1068-1075.
47 Khosla C, Bailey JE. 1988. Heterologous expression of a bacterial haemoglobin improves the growth properties of recombinant Escherichia coli. Nature 331: 633-635.   DOI
48 Faraco V, Pezzella C, Miele A, Giardina P, Sannia G. 2009. Bio-remediation of colored industrial wastewaters by the white-rot fungi Phanerochaete chrysosporium and Pleurotus ostreatus and their enzymes. Biodegradation 20: 209-220.   DOI
49 Farrés J, Kallio PT. 2002. Improved cell growth in tobacco suspension cultures expressing Vitreoscilla hemoglobin. Biotechnol. Progr. 18: 229-233.   DOI
50 Frey AD, Oberle BT, Farrés J, Kallio PT. 2004. Expression of Vitreoscilla haemoglobin in tobacco cell cultures relieves nitrosative stress in vivo and protects from NO in vitro. Plant Biotechnol. J. 2: 221-231.   DOI
51 Heitmann P. 1968. A model for sulfhydryl groups in proteins. Hydrophobic interactions of the cysteine side chain in micelles. Eur. J. Biochem. 3: 346-350.   DOI