• Title/Summary/Keyword: Permselectivity

Search Result 70, Processing Time 0.026 seconds

Iron(II) Porphyrin계 화합물을 포함한 Polysulfone 막에서의 $O_2,N_2$ 투과특성에 관한 연구

  • 신우철;김현준;유병수;홍석인
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.04a
    • /
    • pp.47-48
    • /
    • 1994
  • 분리막을 이용한 기체의 분리는 각 기체의 막에 대한 투과도 차이에 의해 분리하는 방법으로 에너지 소비가 적고, 열 안정성이 약한 물질을 저온에서 분리할 수 있는 장점, 좁은 공간에서도 이용할 수 있다는 점 등으로 미루어 볼때 기존 공정에 대한 새로운 경쟁자로서 그 가능성이 한층 커지고 있다. 분리막의 특성은 투과도(Permeability)와 선택투과도(Permselectivity)에 의해 결정되고 이 두가지 특성을 모두 높이기 위한 연구가 활발히 진행되고 있다. 그 연구방향은 (1) 새로운 고분자의 합성 및 고분자의 개질 (2) 복합재료의 개잘 (3) 액정 (4) 촉진수송법 등으로 나눠질수 있다. 이 중 촉진수송(Facilitated Transport)이란 특정한 기체와 가역적 친화력 또는 흡착력을 갖는 운반체(ㅊㅁㄱ\ulcornerㄱ)를 액체나 고체막에 분산시켜 원하는 특정 기체만을 선택적으로 수용하는 것을 말한다.

  • PDF

Development of Pore-filled Ion-exchange Membranes for Efficient All Vanadium Redox Flow Batteries

  • Kang, Moon-Sung
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.4
    • /
    • pp.204-210
    • /
    • 2013
  • Thin pore-filled cation and anion-exchange membranes (PFCEM and PFAEMs, $t_m=25-30{\mu}m$) were prepared using a porous polymeric substrate for efficient all-vanadium redox flow battery (VRB). The electrochemical and charge-discharge performances of the membranes have been systematically investigated and compared with those of commercially available ion-exchange membranes. The pore-filled membranes were shown to have higher permselectivity as well as lower electrical resistances than those of the commercial membranes. In addition, the VRBs employing the pore-filled membranes exhibited the respectable charge-discharge performances, showing the energy efficiencies (EE) of 82.4% and 84.9% for the PFCEM and PFAEM, respectively (cf. EE = 87.2% for Nafion 1135). The results demonstrated that the pore-filled ion-exchange membranes could be successfully used in VRBs as an efficient separator by replacing expensive Nafion membrane.

Preferential Sorption and Its Role on Pervaporation of Organic Liquid Mixtures

  • 박현채;김은영
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.04a
    • /
    • pp.34-35
    • /
    • 1995
  • The unique feature of pervaporation is the mass transfer from a liquid phase to a vapor phase through a non-porous polymeric membrane. When a liquid mixture is brought into contact with a membrane at one side, it is sorbed into the membrane. Due to a driving force applied across the membrane, the sotbed liquid molecules permeate through the membrane and evaporate at the downstream side of the membrane. In pervaporation the permeated species are usually removed from the downstream side under a relatively low vapor pressure, for example by evacuation with a vacuum pump. As far as this condition is fulfilled, the evaporation step can be considered to be much faster than sorption or diffusion. Hence evaporation does not contribute to permselectivity. Therefore the separation by pervaporation results from the differences in the preferential sorption of the individual components of a mixture into the membrane together with the diffusion rates through the membrane. This postulation implies that both sorption and diffusion phenomena have to be accounted for to understand the physico-chemical nature of the pervaporation separation process.

  • PDF

Synthetic Membranes in Biotechnology: Realities and Possibilities (생물공학에서의 합성막 : 현실과 가능성)

  • Belfort, Georges
    • Membrane Journal
    • /
    • v.2 no.2
    • /
    • pp.91-103
    • /
    • 1992
  • Synthetic membrane processes are being increasingly integrated into existing reaction, isolation, and recovery schemes for the production of valuable biological molecules. In many cases they are replacing traditional unit processes. The properties of membrane systems which are most often exploited for both upstream and downstream processing and their permselectivity, high surface area per unit volume, are their potential for controlling the level of contact and/or mixing between two separate phases. Advances in both membrane materials and module design and operation have led to better control of concentration polarization and membrane fouling. After presenting some recent advances in membrane materials and fluid mechanics, we demonstrate how membranes have been integrated into cellular and enzymatic reaction schemes. This is followed by a review of established and emerging synergism between biological processes and synthetic membranes.

  • PDF

Synthetic membranes in Biotechnology: Realities and Possibilities

  • Belfort, Georges
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1992.10a
    • /
    • pp.15-33
    • /
    • 1992
  • Synthetic membrane processes are being increasingly integrated into existing reaction, isolation, and recovery schemes for the production of valuable biological molecules. In many cases they are replacing traditional unit processes. The properties of membrane systems which are most often exploited for both upstream and downstream processing are their permselectivity, high surface area per unit volume, and their potential for controlling the level of contact and/or mixing between two separate phases. Advances in both membrane materials and module design and operation have led to better control of concentration polarization and membrane fouling. After presenting some recent advances in membrane materials and fluid mechanics, we demonstrate how membranes have been integrated into cellular and enzymatic reaction schemes. This is followed by a review of established and emerging membrane separation processes. Several examples are used to emphasize the synergism between biological processes and synthetic membranes.

투과증발 공정

  • 장재화;이규현
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.03a
    • /
    • pp.127-158
    • /
    • 1996
  • 투과증발은 막분리 기술의 하나로 역삼투막, 한외여과막 등의 다른 막분리와 달리 혼합물 분리가 막소재 물질과 분리 대상 유기물 사이의 화학 친화도에 의해 이루어지기 때문에 혼합물중의 특정 성분에 대한 선택도가 높은 비다공성 고분자 복합막이 사용된다. 투과증발막 투과의 구동력은 투과 성분의 활동도(activity) 차로 이는 부분 증기압차로 구체화되며, 이 구동력을 높이기 위해서 feed side는 고온 유지를 위한 열교환기가 필요하며 permeate side는 진공하에서 감압에 의한 증기상으로의 전환을 이루게 하며 이를 다시 응축하여 연속 투과가 일어날 수 있게 한다. 따라서 투과증발의 핵심 기술은 분리하고자 하는 물질에 대하여 높은 투과선택도(permselectivity)를 갖는 투과증발막의 제조 기술이며, 제조된 막을 실공정에 적용하기 위한 모듈 설계, 제작 기술과 이를 시스템화하여 실규모로 Scale-up 할 수 있는 시스템 설계 기술도 실용화를 위해서 반드시 이루어져야 한다.

  • PDF

Synthesis and Properties of Poly[4,4-bis(acetoxymethyl)-1,6-heptadiyne]

  • Kim, Yun-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.1
    • /
    • pp.66-70
    • /
    • 1997
  • The polymerization of 4, 4-bis(acetoxymethyl)-1, 6-heptadiyne (BAH) was carried out by MoCl5 and WCl6 with various organometallic cocatalysts. MoCl5-based catalysts were more effective than WCl6-based ones for the cyclopolymerization of BAH. Poly(BAH) was characterized to have polymer backbone with conjugated double bond and cyclic structure by IR, UV-visible, and 1H-and 13C NMR spectroscopies. The polymer was stable up to 310 ℃ and 5 % weight loss show up at 350 ℃. The resulting dark violet polymer exhibited good solubility in common organic solvents and could be cast on a glass plate to give film with good mechanical properties. It was found that oxygen permeability (PO2) and permselectivity (PO2/PN2) of the resulting polymer were 15.2 barrer and 2.84, respectively.

A Study on Process Performances of Continuous Electrodeionization with a Bipolar Membrane for Water Softening and Electric Regeneration (바이폴라막을 이용한 연수용 전기탈이온의 공정 효율 및 전기적 재생에 관한 연구)

  • Moon, Seung-Hyeon;Hong, Min-Kyoung;Han, Sang-Don;Lee, Hong-Joo
    • Membrane Journal
    • /
    • v.17 no.3
    • /
    • pp.210-218
    • /
    • 2007
  • CEDI-BPM(Continuous Electrodeionization-Bipolar Membrane) has advantages due to high ion permselectivity through ion exchange membranes and the production of $H^+$ and $OH^-$ ions on the bipolar membrane surfaces for regeneration of ion exchange resin during electrodeionization operation. In this study, hardness materials were removed by the CEDI-BPM without scale formation and the ion exchange resins were electrically regenerated during the operation. The adsorption characteristic of ion exchange resin surface, the influence of flow rate on the hardness removal and electric regeneration were investigated in the study. The removal efficiency of Ca was higher than that of Mg in the CEDI-BPM, which was related to the high adsorption capacity of Ca on the cation exchange resin. With increasing flow rate, the flux of Ca and Mg was enhanced by the permselectivity of a cation exchange membrane. In the electric regeneration of CEDI-BPM, it was shown that the regeneration efficiency was higher with a lower regeneration potential applied between cathode and anode.

A Study on the Permeation Properties of Permanent Gases and condensable Vapors through Hexamethyldisiloxane Plasma-Polymerized Membranes (Hexamethyldisiloxane 플라즈마 중합막을 통한 영구기체 및 응축성 증기의 투과특성에 관한 연구)

  • Oh, Sae-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.699-706
    • /
    • 2018
  • The permeation properties of plasma polymer membranes were studied for permanent gases such as He, $H_2$, $O_2$, $N_2$, $CH_4$ and condensable vapors such as $CO_2$, $C_2H_4$, $C_3H_8$. The plasma polymers were prepared by the discharge of microwave or radiofrequency(RF) wave. Hexamethyldisiloxane (HMDS) vapor was used as a monomer for plasma polymerization. In HMDS plasma-polymerized membranes prepared under microwave discharge, the permeability coefficient was dependent of the kinetic molecular diameter of the permeate gases. Additionally the membranes showed higher $O_2/N_2$ permselectivity compared to the plasma polymers from radiofrequency discharge. On the contrary, in the HMDS plasma-polymerized membranes prepared under radiofrequency discharge, the permeability coefficient was dependent of the critical temperature of the permeant gases. The membranes showed high selectivities of $C_2H_4$ and $C_3H_8$ over $N_2$. The permeability coefficient of plasma polymerized membranes prepared under microwave discharge was dependent of the molecular diameter of permeant gases because of high crosslinking density of the membrane. However, the crosslinking density of the plasma polymerized membranes prepared under RF discharge was lower because the energy density of RF wave is weaker than that of microwave. Hence, the permeability of RF plasma polymerized membranes became dependent of the critical temperature rather than molecular diameter of the gases.

Research and Development Trends of Polyimide Based Material for Gas Separation (기체분리용 폴리이미드 소재의 연구개발동향)

  • Kim, Deuk Ju;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.23 no.6
    • /
    • pp.393-408
    • /
    • 2013
  • Gas separation processes using polymeric membranes have been greatly developed during the last few decades due to high energy efficiency and economic advantages. To achieve optimum economic performance, gas separation membranes required high permeability and selectivity. So, a number of reports examining the various polymeric materials for gas separation membranes have been published. Among the studied materials, polyimide (PI), which exhibit high permselectivity for various gas pairs, high chemical resistance, thermal stability, and mechanical strength, have attracted much attention. This paper focuses on the basic principle of gas separation, preparation procedure of membrane along with the recent developments and research trends of PI based materials for gas separation.