• Title/Summary/Keyword: Permeate Flux

Search Result 305, Processing Time 0.018 seconds

Permeate Flux Analysis of Direct Contact Membrane Distillation (DCMD) and Sweep Gas Membrane Distillation (SGMD) (직접접촉식과 동반기체식 막증류 공정의 투과수 변화에 따른 비교해석)

  • Eum, Su-Hwan;Kim, Albert S.;Lee, Yong-Taek
    • Membrane Journal
    • /
    • v.21 no.3
    • /
    • pp.236-246
    • /
    • 2011
  • In this study, we used prepared a cylindrical module consisting 100 hollow fibers of commercialized (hydrophobic) polyethylene membrane of $0.4{\mu}m$ pore size and systematically studied performance of direct contact membrane distillation (DCMD) and sweep gas membrane distillation (SGMD) in terms of variation of permeate flux and salt rejection with respect to temperature drop across the membrane, salt concentrations in feed, and flow rates of cooling water and sweep gas. SGMD was regarded as DCMD with a sweep gas layer between permeate-side membrane surface and cooling water. Sweep gas flow decreases the permeate flux from that of DCMD by providing an additional gas-layer resistance. We compared DCMD and SGMD performance by using mass balance with a fitting parameter (${\omega}$), indicating fraction of permeate flow rate.

Using Coagulant and Activated Carbon as Pretreatment for Membrane Fouling Control in MBR (Membrane Bioreactor) (MBR반응기의 막오염방지를 위한 활성탄과 응집제를 이용한 전처리에 관한 연구)

  • Kim, Dong-Ha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.1
    • /
    • pp.122-127
    • /
    • 2006
  • The aim of this study was to investigate the characteristics of membrane fouling caused by soluble organic materials in a membrane bioreactor process. For the removal of filterable organic materials (FOC) smaller than $1{\mu}m$, coagulants and activated carbon were added. A membrane bioreactor using a submerged $17{\mu}m$ metal sieve was operated in laboratory scale to examine the possibility of membrane fouling control. As the dosage of GAC and coagulant increased, the residual FOC concentration decreased and the permeate flow rate increased markedly. The permeate flux increased with an increased PACl addition at the range from 0 to 50 mg/l. At coagulant dosage of 27mg/l, the removal of FOC was about 46% and the flux increased to 3.5 times compared to the case without PACl addition. The permeate flux increased gradually with an increase in GAC dosage. At GAC dosage of 50mg/L, the permeate flux was about 2 times higher compared that for raw water. The particle in the range of $0.1{\sim}1.0{\mu}m$ were removed effectively by the addition of GAC and coagulant. Higher osage of GAC and coagulant, led to higher removal of FOC. A different set of experiments was also performed to investigate the effect of pretreatment on the permeation ability of MBR system using the metal sieve membrane. After 40 hours of operation, the permeate flux was about 1,000 ($L/m^2-hr$), which is 20 times higher compared to the results in literature. It is likely that combined pretreatment using coagulant and activated carbon was the most effective to resolve membrane fouling problems. Moreover, the continuous operations could be successful by applying this pretreatment method.

Ultrafiltration of Soybean Curd Whey for the Separation of Functional Components (유용성 물질의 분리를 위한 두부순물의 한외여과)

  • 서성희;황인경
    • Korean journal of food and cookery science
    • /
    • v.13 no.4
    • /
    • pp.507-513
    • /
    • 1997
  • To separate and concentrate functional components contained in soybean curd whey, ultrafiltration was performed using regenerated cellulose or polysulphone membrane of spiral-wound type with MWCO 10,000, and the permeate and retentate solutions were analyzed. As the pH of soybean curd whey increased, the permeate flux decreased in both membranes. Treatment of 0.01 M EDTA rather decreased the permeate flux compared with control. The concentration of ionic calcium, which decreased with the pH increase, was thought to affect the permeate flux also. In case of polysulphone membrane, the permeate was efficiently purified and the retentate protein was concentrated significantly in which the membrane rejection value (MRV) for chemical oxygen demand (COD) was 79.25% and that of protein was 98.42% at the volume concentration ratio (VCR) of 10. MRV of the protein of regenerated cellulose membrane was lower than that of polysulphone membrane. To recover oligosaccharides to the permeate solution and increase the content of raffinose and stachyose, regenerated cellulose membrane was more suitable than polysulphone membrane and the optimum VCR was 4.

  • PDF

Effects of Fouling on Permeate Flux during Ultrafiltration of Protein Solutions in a Hollow-Fiber Membrane Reactor (중공사 막반응기에서 단백질용액의 한외여과시 유출속도에 미치는 Fouling의 영향)

  • 김세권;변희국이환근하진환
    • KSBB Journal
    • /
    • v.9 no.5
    • /
    • pp.483-491
    • /
    • 1994
  • It is known that a key limiting factor to the use of ultrafiltration membranes is that of membrane fouling, which has been a major cause of permeate flux reduction. In this work, the effects of several factors (operating time, protein concentration, temperature and pH, etc.) influencing permeate flux during ultrafiltration of gelatin, casein and bovine serum albumin using a hollow fiber membrane(M. W. 10,000 cut off) reactor have been examined. The permeate flux of gelatin solution was maintained almost constant during the operation up to 6 hours, but those of casein and albumin solutions were decreased to 50% and 43% of initial value after an operation time of 60min. The permeate flux with increasing concentration and temperature of protein solutions increased, but the permeate flux showed a minimum value near the isoelectric point of proteins. The permeate fluxes of protein solution were enhanced by a temperature increase and pH control. Also, it is proposed that fouling can be decreased by the pretreatment of insoluble proteins with enzymes.

  • PDF

Application of Box Wilson experimental design method for removal of acid red 95 using ultrafiltration membrane

  • Akdemir, Ezgi Oktav
    • Membrane and Water Treatment
    • /
    • v.9 no.5
    • /
    • pp.309-315
    • /
    • 2018
  • The applicability of the ultrafiltration process for color removal from dye-containing water has been examined in this study. The optimization of major process variables, such as dye concentration, chitosan concentration and transmembrane pressure on permeate flux and color removal efficiency was investigated. To find the most appropriate results for the experiment, the Box-Wilson experimental design method was employed. The results were correlated by a response function and the coefficients were determined by regression analysis. Permeate flux variation and color removal efficiency determined from the response functions were in good agreement with the experimental results. The optimum conditions of chitosan concentration, dye concentration and pressure were 50 mg/l, 50 mg/l and 3 bars, respectively for the highest permeate flux. On the other hand, optimum conditions for color removal efficiency were determined as 50 mg/l of dye concentration, 50 mg/l of chitosan concentration and 1 bar of pressure.

Analysis of Effect on Freshwater Production of Vacuum Membrane Distillation Module according to Housing Leak (중공사막 진공 막증류 모듈의 하우징 누수가 담수 생산에 미치는 영향 분석)

  • Joo, Hongjin;Kwak, Heeyoul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.313-319
    • /
    • 2016
  • In this study, the performance experiment was conducted to compare the permeate flux of hollow fiber Vacuum Membrane Distillation module according to leak problem between module housing and membrane bundle. For the permeate flux performance experiment of the two Vacuum Membrane Distillation modules, the Lab-scale experimental equipment was built in the capacity of $1m^3/day$. The performance test of the two Vacuum Membrane Distillation modules were analyzed according to the feed water conditions. As a result, it was analyzed that the leak VMD module decreased about 14% of permeate flux than normal VMD module.

Advanced Water Treatment by Tubular Alumina Ceramic Ultrafiltration: Effect of Periodic Water-back-flushing Period

  • Park, Jin-Yong;Lee, Song-Hui
    • Korean Membrane Journal
    • /
    • v.11 no.1
    • /
    • pp.15-20
    • /
    • 2009
  • The periodic water-back-flushing using permeate water was performed to minimize membrane fouling and to enhance permeate flux in tubular ceramic ultrafiltration (UF) system for Gongji stream water treatment in Chuncheon city. The filtration time (FT), which was the water-back-flushing period, 2 min with periodic 15 sec water-back-flushing showed the highest value of dimensionless permeate flux ($J/J_o$), and the lowest value of resistance of membrane fouling ($R_f$), and we acquired the highest total permeate volume ($V_T$) of 6.35 L. Consequently FT 2 min at back-flushing time (BT) 15 sec could be the optimal condition in advanced UF water treatment of Gongji stream. Then the average rejection rates of pollutants by our tubular ceramic UF system were 99.4% for Turbidity, 31.8% for $COD_{Mn}$, 22.6% for $NH_3$-N and 65.9% for T-P.

Effect of Water-Back-Flushing Time on Recovery Efficiency in Ceramic Filtration System for Paper Wastewater Treatment (세라믹 여과 시스템으로 제지폐수 처리시 회수 효율에 대한 물 역세척 시간의 영향)

  • Park Jin Yong
    • Membrane Journal
    • /
    • v.14 no.4
    • /
    • pp.329-338
    • /
    • 2004
  • In this study the discharged wastewater from paper manufacturing plant was filtrated by 4 kinds of tubular ceramic microfiltration and ultrafiltration membranes (carbon material) with periodic water-back-flushing, and we tried to find the optimum back-flushing time (BT). As results of water-BT effect for each ceramic membrane, the longer BT was more effective for a membrane having the larger pore size. And we could acquire the most volume of total permeate and the highest recovery efficiency of purified water, Then, the results of permeate flux vs. initial permeate flux during 180 min's operation showed that the longer BT was more effective for longer filtration time (FT) to obtain the higher permeate flux because membrane fouling proceeded deeply at long FT condition. And the optimum BT that founded from the trends of membrane fouling resistances almost accorded with the optimum BT from the trends of permeate flux, too.

Fundamentals of Particle Fouling in Membrane Processes

  • Bhattacharjee Subir;Hong Seungkwan
    • Korean Membrane Journal
    • /
    • v.7 no.1
    • /
    • pp.1-18
    • /
    • 2005
  • The permeate flux decline due to membrane fouling can be addressed using a variety of theoretical stand-points. Judicious selection of an appropriate theory is a key toward successful prediction of the permeate flux. The essential criterion f3r such a decision appears to be a detailed characterization of the feed solution and membrane properties. Modem theories are capable of accurately predicting several properties of colloidal systems that are important in membrane separation processes from fundamental information pertaining to the particle size, charge, and solution ionic strength. Based on such information, it is relatively straight-forward to determine the properties of the concentrated colloidal dispersion in a polarized layer or the cake layer properties. Incorporation of such information in the framework of the standard theories of membrane filtration, namely, the convective diffusion equation coupled with an appropriate permeate transport model, can lead to reasonably accurate prediction of the permeate flux due to colloidal fouling. The schematic of the essential approach has been delineated in Figure 5. The modern approaches based on appropriate cell models appear to predict the permeate flux behavior in crossflow membrane filtration processes quite accurately without invoking novel theoretical descriptions of particle back transport mechanisms or depending on adjust-able parameters. Such agreements have been observed for a wide range of particle size ranging from small proteins like BSA (diameter ${\~}$6 nm) to latex suspensions (diameter ${\~}1\;{\mu}m$). There we, however, several areas that need further exploration. Some of these include: 1) A clear mechanistic description of the cake formation mechanisms that clearly identifies the disorder to order transition point in different colloidal systems. 2) Determining the structure of a cake layer based on the interparticle and hydrodynamic interactions instead of assuming a fixed geometrical structure on the basis of cell models. 3) Performing well controlled experiments where the cake deposition mechanism can be observed for small colloidal particles (< $1\;{\mu}m$). 4) A clear mechanistic description of the critical operating conditions (for instance, critical pressure) which can minimize the propensity of colloidal membrane fluting. 5) Developing theoretical approaches to account for polydisperse systems that can render the models capable of handing realistic feed solutions typically encountered in diverse applications of membrane filtration.

Permeation Characteristics of the Tubular Membrane Module Equipped wtih the Air Injection Nozzle Tube (공기주입 노즐관이 장착된 관형막의 투과특성)

  • Park, Mi Ja;Chung, Kun Yong
    • Membrane Journal
    • /
    • v.27 no.1
    • /
    • pp.43-52
    • /
    • 2017
  • The air injection nozzle tube was inserted inside of the tubular membrane module to reduce membrane fouling and improve the permeate flux. The average pore size of membrane was $0.1\;{\mu}m$ and the yeast was used as a foulant. All of permeate experiments were started without air injection for the module equipped with the nozzle tube, then carried out continuously with air injection. Finally, the nozzle tube was removed from the module and the permeate was measured without air injection. The measured permeate fluxes were compared to examine the effect of air injection. The fluxes for air injection were consistently maintained or increased. The fluxes of no-air injection with the nozzle tube were greater than those of the empty tubular module. As operating pressure decreased to 0.4 bar, the flux enhancement of air injection based on no-nozzle case increased to 21%. Flux enhancements of air injection were above 30% as the gas/liquid two-phase flow was changed from the stratified-smooth to the intermittent pattern due to increase of gas flowrate.