DOI QR코드

DOI QR Code

Permeation Characteristics of the Tubular Membrane Module Equipped wtih the Air Injection Nozzle Tube

공기주입 노즐관이 장착된 관형막의 투과특성

  • Park, Mi Ja (Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology) ;
  • Chung, Kun Yong (Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology)
  • 박미자 (서울과학기술대학교 화공생명공학과) ;
  • 정건용 (서울과학기술대학교 화공생명공학과)
  • Received : 2017.01.31
  • Accepted : 2017.02.20
  • Published : 2017.02.28

Abstract

The air injection nozzle tube was inserted inside of the tubular membrane module to reduce membrane fouling and improve the permeate flux. The average pore size of membrane was $0.1\;{\mu}m$ and the yeast was used as a foulant. All of permeate experiments were started without air injection for the module equipped with the nozzle tube, then carried out continuously with air injection. Finally, the nozzle tube was removed from the module and the permeate was measured without air injection. The measured permeate fluxes were compared to examine the effect of air injection. The fluxes for air injection were consistently maintained or increased. The fluxes of no-air injection with the nozzle tube were greater than those of the empty tubular module. As operating pressure decreased to 0.4 bar, the flux enhancement of air injection based on no-nozzle case increased to 21%. Flux enhancements of air injection were above 30% as the gas/liquid two-phase flow was changed from the stratified-smooth to the intermittent pattern due to increase of gas flowrate.

분리막 오염을 감소시키고 투과유속 향상을 위하여 관형분리막 모듈 내에 공기 분사노즐관을 삽입시켰다. 분리막의 평균 기공크기는 $0.1\;{\mu}m$이며 이스트를 오염물질로 사용하였다. 모든 투과실험은 노즐관을 모듈에 장착하고 공기를 주입하지 않는 실험을 먼저 실시하고 연속해서 공기를 주입하는 투과실험을 하였다. 그 다음 노즐관을 제거한 후 공기를 주입시키지 않으면서 투과유속을 측정하였다. 측정된 투과유속은 공기주입 효과를 분석하기 위하여 비교하였다. 공기주입에 대한 투과유속은 거의 일정하거나 증가하였다. 노즐관이 장착되고 공기 주입을 하지 않을 경우의 투과유속이 빈 관형 모듈의 경우보다 높았다. 운전압력을 0.4 bar까지 감소시키면 노즐관이 장착되지 않는 경우와 비교하여 공기를 주입할 경우 투과유속이 21%까지 향상되었다. 기체량이 증가하여 기/액체 2상 흐름이 stratified-smooth에서 intermittent 상태로 변화됨에 따라서 공기 주입에 의한 투과유속은 30% 이상으로 증가하였다.

Keywords

References

  1. J. W. Lee, S. H. Kook, S. J. Kim, and I. S. Kim, "Effect of intermittent pressure-assisted forward osmosis (I-PAFO) operation on colloidal membrane fouling and physical cleaning efficiency", Membr. J., 26, 273 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.4.273
  2. Y. K. Choi, H. C. Kim, and S. H. Noh, "Effects of fouling reduction by intermittent aeration in membrane bioreactors", Membr. J., 25, 276 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.3.276
  3. H. N. Jang, I. C. Kim, and Y. T. Lee, "Membrane permeation characteristics and fouling control through the coating of poly(vinyl alcohol) on PVDF membrane surface", Membr. J., 24, 276 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.4.276
  4. Z. F. Cui and K. I. T. Wright, "Gas-liquid two-phase cross-flow ultrafiltration of BSA and dextran solutions", J. Membr. Sci., 90, 183 (1994). https://doi.org/10.1016/0376-7388(94)80045-6
  5. J. G. Choi and K. Y. Chung, "Permeation characteristics of the microfiltration tubular module using the discharged rod", Membr. J., 19, 285 (2009).
  6. J. A. Howell, T. W. Field, and D. Wu, "Yeast cell microfiltration: flux enhancement in baffled and pulsatile flow systems", J. Membr. Sci., 80, 59 (1993). https://doi.org/10.1016/0376-7388(93)85132-G
  7. I. G. Racz, J. Groot, and R. Klaassen, "Mass transfer, fluid flow and membrane properties in flat and corrugated plate hyperfiltration modules", Desalination, 60, 213 (1986). https://doi.org/10.1016/0011-9164(86)85001-9
  8. M. Mercier and C. Fonade, "Air-sparged microfiltration of enzyme/yeast mixtures: determination of optimal conditions for enzyme recovery", Desalination, 148, 171 (2002). https://doi.org/10.1016/S0011-9164(02)00673-2
  9. K. J. Hwang and C. E. Hsu, "Effect of gas-liquid pattern on air-sparged cross-flow microfiltration of yeast suspension", Chem. Eng. J., 151, 160 (2009). https://doi.org/10.1016/j.cej.2009.02.009
  10. T. M. Qaisrani and W. M. Samhalber, "Impact of gas bubbling and backflushing on fouling control and membrane cleaning", Desalination, 266, 154 (2011). https://doi.org/10.1016/j.desal.2010.08.019
  11. T. W. Cheng, "Influence of inclination on gas-sparged cross-flow ultrafiltration through an inorganic tubular membrane", J. Membr. Sci., 196, 103 (2002). https://doi.org/10.1016/S0376-7388(01)00584-1
  12. Z. F. Cui, S. Chang, and A. G. Fane, "The use of gas bubbling to enhance membrane processes", J. Membr. Sci., 221, 1 (2003). https://doi.org/10.1016/S0376-7388(03)00246-1
  13. G. Qian, J. Zhou, J. Zhang, C. Chen, R. Jin, and W. Liu, "Microfiltration performance with two phase flow", Sep. Purif. Techol., 98, 165 (2012). https://doi.org/10.1016/j.seppur.2012.06.032
  14. C. Cabassued, S. Laborie, and J. M. Laine, "How slug flow can improve ultrafiltration flux in organic hollow fibres", J. Membr. Sci., 128, 93 (1997). https://doi.org/10.1016/S0376-7388(96)00316-X
  15. P. Mikulasek, J. Cakl, P. Pospisil, and P. Dolecek, "The use of flux enhancement methods for high flux cross-flow membrane microfiltration system", Chem. Biochem. Eng. Q., 14, 117 (2000).
  16. H. Fadaei, S. R. Tabaei, and R. Roostaazad, "Comparative assessment of the efficiencies of gas sparging and back-flushing to improve yeast microfiltration using tubular ceramic membrane", Desalination, 217, 93 (2007). https://doi.org/10.1016/j.desal.2007.02.008
  17. M. J. Park and K. Y. Chung, "Permeation characteristics of the tubular membrane with continuous air cleaning system", Membr. J, 23, 185 (2013).
  18. C. Liu, S. Caothien, J. Hayes, T. Caothuy, T. Otoyo, and T. Ogawa, "Membrane chemical cleaning: from art to science", pp 1, Pall Co., USA (2010).
  19. O. Bratland, "Pipe Flow 2: Multi-phase flow assurance", pp 11, e-book (2013).
  20. V. Kippax, "MemPulse MBR system vs traditional MBR systems", http://www.thembrsite.com/features/mempulse-mbr-system-vs-traditional-mbr-systems, June 04 (2011).