• Title/Summary/Keyword: Permeate

Search Result 518, Processing Time 0.028 seconds

Fundamentals of Particle Fouling in Membrane Processes

  • Bhattacharjee Subir;Hong Seungkwan
    • Korean Membrane Journal
    • /
    • v.7 no.1
    • /
    • pp.1-18
    • /
    • 2005
  • The permeate flux decline due to membrane fouling can be addressed using a variety of theoretical stand-points. Judicious selection of an appropriate theory is a key toward successful prediction of the permeate flux. The essential criterion f3r such a decision appears to be a detailed characterization of the feed solution and membrane properties. Modem theories are capable of accurately predicting several properties of colloidal systems that are important in membrane separation processes from fundamental information pertaining to the particle size, charge, and solution ionic strength. Based on such information, it is relatively straight-forward to determine the properties of the concentrated colloidal dispersion in a polarized layer or the cake layer properties. Incorporation of such information in the framework of the standard theories of membrane filtration, namely, the convective diffusion equation coupled with an appropriate permeate transport model, can lead to reasonably accurate prediction of the permeate flux due to colloidal fouling. The schematic of the essential approach has been delineated in Figure 5. The modern approaches based on appropriate cell models appear to predict the permeate flux behavior in crossflow membrane filtration processes quite accurately without invoking novel theoretical descriptions of particle back transport mechanisms or depending on adjust-able parameters. Such agreements have been observed for a wide range of particle size ranging from small proteins like BSA (diameter ${\~}$6 nm) to latex suspensions (diameter ${\~}1\;{\mu}m$). There we, however, several areas that need further exploration. Some of these include: 1) A clear mechanistic description of the cake formation mechanisms that clearly identifies the disorder to order transition point in different colloidal systems. 2) Determining the structure of a cake layer based on the interparticle and hydrodynamic interactions instead of assuming a fixed geometrical structure on the basis of cell models. 3) Performing well controlled experiments where the cake deposition mechanism can be observed for small colloidal particles (< $1\;{\mu}m$). 4) A clear mechanistic description of the critical operating conditions (for instance, critical pressure) which can minimize the propensity of colloidal membrane fluting. 5) Developing theoretical approaches to account for polydisperse systems that can render the models capable of handing realistic feed solutions typically encountered in diverse applications of membrane filtration.

Experimental and Theoretical Consideration for Flow Rate, Pressure Drop, and Permeate Flow in a Hollow Fiber Membrane (중공사 막을 따라 흐르는 순수한 물의 유량, 압력손실, 투과수에 대한 실험과 이론적 고찰)

  • Lee, Jung-Muk;Lee, Bomsock
    • Membrane Journal
    • /
    • v.22 no.6
    • /
    • pp.470-480
    • /
    • 2012
  • In this study, for a linear tubular membrane with constant diameter the mass balance considering permeate velocity of the each unit length was established. On this basis, mathematical modelling of flows in a pipe was solved using nonlinear second order differential equations as well as steady-state equation. Since this equation is nonlinear, Gauss-Seidel method or another iteration method were used to solve the differential equations. Simulation algorithm for numerical solutions was presented. Also since the permeate flow is varied as operating condition, the solution of equations at each conditions using numerical integrations such as Simpson's rules was used. In order to analyze and compare simulation results, we have performed experiments using a hollow fiber membrane with almost identical tubular membrane. Comparison of theoretical and experimental results, pressure drop, flow rate, and permeate flow in a hollow fiber membrane, were illustrated.

Permeation Characteristics of the Tubular Membrane Module Equipped wtih the Air Injection Nozzle Tube (공기주입 노즐관이 장착된 관형막의 투과특성)

  • Park, Mi Ja;Chung, Kun Yong
    • Membrane Journal
    • /
    • v.27 no.1
    • /
    • pp.43-52
    • /
    • 2017
  • The air injection nozzle tube was inserted inside of the tubular membrane module to reduce membrane fouling and improve the permeate flux. The average pore size of membrane was $0.1\;{\mu}m$ and the yeast was used as a foulant. All of permeate experiments were started without air injection for the module equipped with the nozzle tube, then carried out continuously with air injection. Finally, the nozzle tube was removed from the module and the permeate was measured without air injection. The measured permeate fluxes were compared to examine the effect of air injection. The fluxes for air injection were consistently maintained or increased. The fluxes of no-air injection with the nozzle tube were greater than those of the empty tubular module. As operating pressure decreased to 0.4 bar, the flux enhancement of air injection based on no-nozzle case increased to 21%. Flux enhancements of air injection were above 30% as the gas/liquid two-phase flow was changed from the stratified-smooth to the intermittent pattern due to increase of gas flowrate.

Application of Box Wilson experimental design method for removal of acid red 95 using ultrafiltration membrane

  • Akdemir, Ezgi Oktav
    • Membrane and Water Treatment
    • /
    • v.9 no.5
    • /
    • pp.309-315
    • /
    • 2018
  • The applicability of the ultrafiltration process for color removal from dye-containing water has been examined in this study. The optimization of major process variables, such as dye concentration, chitosan concentration and transmembrane pressure on permeate flux and color removal efficiency was investigated. To find the most appropriate results for the experiment, the Box-Wilson experimental design method was employed. The results were correlated by a response function and the coefficients were determined by regression analysis. Permeate flux variation and color removal efficiency determined from the response functions were in good agreement with the experimental results. The optimum conditions of chitosan concentration, dye concentration and pressure were 50 mg/l, 50 mg/l and 3 bars, respectively for the highest permeate flux. On the other hand, optimum conditions for color removal efficiency were determined as 50 mg/l of dye concentration, 50 mg/l of chitosan concentration and 1 bar of pressure.

Water purification from pesticides by spiral wound nanofiltration membrane

  • Bottino, A.;Capannelli, G.;Comite, A.;Ferrari, F.;Firpo, R.
    • Membrane and Water Treatment
    • /
    • v.2 no.1
    • /
    • pp.63-74
    • /
    • 2011
  • A spiral wound nanofiltration (NF) membrane (GE Osmonics, DK 4040F) was used to remove pesticides from water. Several solutions of single pesticides and their mixtures were prepared. The pesticides initial concentration ranged from ca. 50 ng/L (single pesticide) to ca. 700 ng/L (as sum of 14 pesticides) and progressively increased with time since the NF experiments were carried out in a concentration mode up to a Volume Concentration Ratio, VCR = 10. Permeate flux and pesticides retention were evaluated as a function of the Volume Concentration Ratio. The permeate flux did not practically change by varying VCR. Pesticide retention was found to be around 97-98% both in the cases of single pesticide solutions and different mixtures of pollutants, and was not affected by the VCR. Pesticides concentration in permeate samples was found to be lower than the maximum concentration level fixed in European directive.

Analysis of Effect on Freshwater Production of Vacuum Membrane Distillation Module according to Housing Leak (중공사막 진공 막증류 모듈의 하우징 누수가 담수 생산에 미치는 영향 분석)

  • Joo, Hongjin;Kwak, Heeyoul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.313-319
    • /
    • 2016
  • In this study, the performance experiment was conducted to compare the permeate flux of hollow fiber Vacuum Membrane Distillation module according to leak problem between module housing and membrane bundle. For the permeate flux performance experiment of the two Vacuum Membrane Distillation modules, the Lab-scale experimental equipment was built in the capacity of $1m^3/day$. The performance test of the two Vacuum Membrane Distillation modules were analyzed according to the feed water conditions. As a result, it was analyzed that the leak VMD module decreased about 14% of permeate flux than normal VMD module.

Ethanol dehydration pilot test with pervaporation technology (투과증발법을 이용한 에탄올 탈수 파일럿 시험)

  • 이규현;유제강;장재화;안승호
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.10a
    • /
    • pp.42-45
    • /
    • 1994
  • 정밀화학, 제약산업 등에 필요한 에탄올, IPA 등과 같은 유기용매를 고순도로 농축하는 공정은 유기용매와 물과의 혼합물이 일정 농도에서 공비점을 형성하여 일반 증류로는 분리하기 힘들어 Benzene, Cycloheaxane 드의 Entrainer를 첨가하여 상대휘발도를 변화시켜 분리하는 공비증류가 이용되고 있다. 그러나 공비증류는 에너지 사용량이 많고 유독한 물질을 사용하므로 투과증발법과 같은 저에너지 소비형, 환경 친화적인 공정에 대한 관심이 높아지고 있다. 투과증발법에 의한 유기용매 농축공정은 물과의 친화성이 높은 비다공성 막을 이용하여 선택적으로 물을 투과하여 유기용매를 탈수하는 방법으로 투과를 위한 Driving force는 Feed side와 Permeate side사이의 Chemical potential gradient로 이는 물에 대한 Partial vapor pressure differnece로 다음과 같이 표시된다. $\Delta \mu_{F/P.W} = RT ln\frac{y_WP_P}{x_W\gamma_WP_{o.W}}$ 따라서 투과속도를 높이기 위해서 Permeate side를 진공상태로 하여 투과하는 물질을 기화시키고 이를 다시 응축하여 Permeate side의 압력을 낮게 유지시켜야 한다.

  • PDF

Permeate sides pressure drop in rotary disc of ultrafiltration (회전원판형 한외여과의 투과면의 압력손실)

  • 박지훈;장진호;노수홍
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.159-162
    • /
    • 1998
  • 폐수의 형태 및 성장과 막의 특성에 의해 한외여과는 처리수의 직접배출 또는 재 이용을 위해 사용되고 있다. 일본의 Masuda등은 1축 RDM을 사용하여 순수에서 회전에 따른 압력 강하를 관찰하고, 또 도시 하수처리 공정의 활성슬러지를 분리하기 위해 Aqua Renaissance '90프로젝트의 일환으로 도시 하수처리에 2축 RDM이 사용되었다. 동력학적 여과의 투과모델은 김제우 등에 의해 정립된 식을 이용하여 동력학적 여과기의 투과율(J)은 일반적으로 유효압력차($\DeltaP_T$), 벌크의 농도($C_B$) 그리고 회전속도 등에 의해 결정되어진다. 기존에 제시된 회전원판 모듈의 순수 투과에서 permeate side의 저항(Rp)값은 막자체의 저항(Rm)에 비해 상대적 작아 무시되었다. 본 연구는 1축 RDM 한외여과에서 투과율에 영향을 미치는 저항(R)에서 판자체에 변형을 주어 permeate side에서 저항(Rp)에 대한 영향에 관하여 연구를 수행하였다.

  • PDF

Effect of Pretreatment Process on Hybrid Membrane Filtration Performance (원수의 물리.화학적 특성에 따른 막 분리 공정의 전처리 공정 적용성 평가)

  • Jung, Chul-Woo;Son, Hee-Jong;Bae, Sang-Dae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.6
    • /
    • pp.613-619
    • /
    • 2006
  • The objectives of this research are to evaluate the effect of membrane materials, particulate matter and membrane pore size on permeate flux. It was shown that the removal efficiency of high MW organic matter more than 10 kDa was lower than that of low MW organic matter for $MIEX^{(R)}$ process. For the change of permeate flux by the pretreatment process, $MIEX^{(R)}+UF$ process showed high removal efficiency of organic matter as compared with coagulation+UF processes, but high reduction rate of permeate flux was presented through the reduction of removal efficiency of high MW organic matter. The pretreatment of the raw water significantly reduced the fouling of the hydrophilic membrane, but did not decrease the flux reduction of the hydrophobic membrane. Flux decline on MF process increased due to the pore clogging, while the permeate flux decline of UF process decreased due to the formation of cake layer. It was shown that particle matter was not effect on MIEX+membrane process. But, for coagulation+membrane process, particle matter was important factor on permeate flux.

Pre-concentration of Apple Juice with Different Reverse Osmosis Membranes (역삼투막을 이용한 사과쥬스의 예비농축)

  • Kim, Kil-Hwan;Park, Hyun-Jin;Kim, Dong-Man
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.419-425
    • /
    • 1988
  • The clarified apple juice was pre-concentrated by reverse osmosis system as a trial for reduction of heat treating time and quality drop in concentration of the juice. The permeate fluxes through CA 865 and CA 960 membranes were higher than those of HR 95 and HR 98 membranes even at the low operating pressure. In the concentration limit depended on the membranes used, HR membranes operated at 60 bar showed $29.0^{\circ}$Brix, and the time required to reach the limit was 86 min for HR 95 and 71 min for HR 98. In cases of CA membranes run at 30 bar, the juice concentration was linearly increased without the limit, and longer time to reach the same concentration was required in comparison with HR membranes. As the juice concentration was increased, the loss of soluble solids was increased, and the average contents of soluble solids in the permeate passed through HR 95, HR 98, CA 865 and CA 960 were 1.3, 0.5, 7.5 and $2.3^{\circ}$ Brix, respectively, in the juice concentration range of 20.0 -$25.0^{\circ}$ Brix. The lower amounts of sugars, total acid and flavor volatiles were involved in the permeate through HR membranes, especially HR 98 than in the permeate through CA membranes.

  • PDF