• Title/Summary/Keyword: Permeance

Search Result 227, Processing Time 0.02 seconds

A Study on the Improvement of Dynamic Characteristics of ABS Outlet Valve (ABS 출구 밸브의 동특성 향상에 관한 연구)

  • 김병우;송창섭;이용주
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.133-142
    • /
    • 2002
  • To improve the hydraulic control performance of ABS, it is necessary to establish an efficient control algorithm. And also it is necessary to ova]Hate a hydraulic modulator with solenoid valve quantitatively. In this paper, FEM and permeance method are used to analyze dynamic characteristics of outlet valve. In return, mathmatical modeling of a hydraulic modulator and operating pressure is presented, and the model parameters of an outlet valve are moving plunger, spring constant and orifice diameter. This study shows the way to improve the dynamic characteristic of an ABS outlet valve heavily depending on operating pressure. It is recommended that operating pressure should be justified at the first step toward the design to get the optimal design of an outlet valve.

An Effective Gyrator-based Transformer Modeling using PSIM (PSIM 모델을 이용한 변압기 모델링 및 회로상수 추출방법)

  • Choi, Hee-Su;Choi, Sung-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.207-214
    • /
    • 2016
  • Magnetic circuit is a physical modeling method that is useful in designing and analyzing power transformers, especially for a priori evaluation of leakage and magnetizing inductance before actual production. In this study, a novel modeling approach that uses PSIM magnetic elements adopting gyrator and permeance-capacitances is investigated. A formula to determine the permeance-capacitors in the core and leakage path are established, and a simulation jig is devised to link the physical model and the electrical terminal characteristics with an automated parameter determination process. The derived formula is verified by measurement results of the prototype transformer samples. Given its accuracy and simplicity, this approach is suitable for analyzing and designing LLC resonant transformers whose leakage and magnetizing inductance are very critical to circuit operation.

A Study on 3D Equivalent Magnetic Circuit Network Method Using Trapezoidal Element (사다리꼴 요소를 이용한 3차원 등가자기회로망 해석에 관한 연구)

  • Kim, Sol;Lee, Ju
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.8
    • /
    • pp.449-456
    • /
    • 2002
  • 3D Equivalent magnetic Circuit Network Method (EMCNM) is comparatively the easy way that analyzes 3D models of Electric Machine by using permeance as a distributive magnetic circuit parameter under the existing magnetic equivalent circuit method and Numerical Method. The existing 3D EMCNM could not correctly describe the shape of an analysis target when using rectangular shape element or fan shape element, so it made errors when calculating permeance. Therefore, this paper proposes the trapezoidal element contained rectangular element, fan-shape element, and quadrilateral element to express a shape. The proposed method in this research was confirmed as a useful and an accurate method through comparing with the analysis result of SRM model that is sufficiently guaranteed by 2D-Analysis.

Calculation of the Equivalent Circuit Parameters of Induction Motor using Finite Element Analysis (유한요소법을 이용한 유도전동기의 등가회로 정수 도출)

  • Shim, Dong-Ha;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.55-57
    • /
    • 1997
  • This paper develops the advanced method for the calculation of the equivalent circuit parameters of induction motor. An Induction motor is magnetically coupled system. But the conventional motor (the permeance method) calculates the each component of parameters separately. And it highly depends on the experimental factors and experiences to compensate the errors due to the some assumptions. Rut the proposed method calculates the parameters fully from the results of 2 dimensional finite element analysis. So the complexity in geometry and the non linearity of induction motor can be considered. And the computational cost is reduced compared with the conventional field and circuit approach. The results are compared with parameters from the permeance method. And it is verified by the comparison with the experimental results.

  • PDF

The Consideration of Mesh for 3D-Equivalent Magnetic Circuit Network Method using Trapezoidal Element (사다리꼴 요소를 이용한 3차원 등가자기회로망 해석시 요소 분할의 영향에 관한 연구)

  • Jang, Ki-Bong;Jin, Chang-Sung;Lee, Ju;Baek, Su-Hyeon;Kim, Wa-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.97-99
    • /
    • 2002
  • 3D Equivalent magnetic Circuit Network Method (EMCNM) is comparatively the easy way that analyzes 3D models of Electric Machine by using permeance as a distributive magnetic circuit parameter under the existing magnetic equivalent circuit method and Numerical Method. The existing 3D EMCNM could not correctly describe the shape of an analysis target when using rectangular shape element or fan shape element, so it made errors when calculating permeance. Therefore, this paper use the trapezoidal element contained rectangular element. This paper calculate the torque based on the maxwell stress tenser method when the airgap is one layer, three layers, and 5 layers, respectively.

  • PDF

Silicon Carbide Barrier Technology to Enable Flexible OLED Displays

  • Kim, Sang-Jin;Zambov, Ludmil;Weidner, Ken;Shamamian, Vasgen;Cerny, Glenn
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.452-455
    • /
    • 2007
  • This paper provides an overview on the characteristics of a-SiC:H barrier film deposited for flexible display applications. Key characteristics such as high crack resistance, high thermal/hydro stability, excellent adhesion to the polymer substrate, as well as very low permeance has been demonstrated. The excellence of this barrier film has been shown from competitive analysis compared with other barrier coating materials. Finally, flexible Polymer Light Emitting Diode (PLED) test pixels have been fabricated on the barrier coated plastic substrate, demonstrating the viability of the device with lifetime data.

  • PDF

A Study on the Skewed Stator Slots and Skewed Rotor Magnet Segments of BLDCM (BLDCM에서의 스쿠슬롯과 스큐자극에 대한 고찰)

  • 김광헌;심동준;원종수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.7
    • /
    • pp.643-655
    • /
    • 1991
  • The analysis method on air gap permeance distribution, air gap MMF distribution, air gap flux density distribution, cogging torque and BEMF about the skewed stator slots or the skewed rotor magnet segments for BLDCM, respectively, is studied as a function of the skew ratio. The proposed method describes the differences between the skewed stator slots and teh skewed rotor magnet segments for the air gap permeance distribution, air gap MMF distribution and air gap flux density distribution. The reliability of the method is also confirmed by the waveform of the cogging torque and BEMF through experiments. And the result shows that the effects on the cogging torque and BEMF due to the skewed stator slots or the skewed rotor magnet segments are the same. In case of the skewed stator slots, the effects of the variations of the winding resistance and inductance are also studied.

The Design of Linear DC Motor with Double-Sided Moving Permanent Magnets by Permeance Method (퍼미언스법에 의한 양측식 영구자석 가동형 LDM의 설계)

  • Bae, S.S.;Baek, S.H.;Kim, Y.;Yoon, S.Y.;Maeng, I.J.;Kim, I.N.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.209-213
    • /
    • 1998
  • In the paper, we present the design procedure and analysis the fundamental characteristics for Linear DC Motor(LDM) using permeance method and finite element method (FEM). Designed LDM is made of two permanent magnets, three iron core and armature windings. For the design of the LDM, first of all it is necessary to calculate the air gap flux density and thrust force, after that to determine core size, the numbers of winding turns, winding width, etc. To demonstrate the method of caculation yields the right results, we used Maxwell program package for computing magnetic fields. Finally we find that the proposed design procedure in this paper is effective to design of LDM.

  • PDF

Analysis of Cogging Torque in Interior Permanent Magnet Motor by Analytical Method

  • Kang, Gyu-Hong;Hong, Jung-Pyo;Kim, Gyu-Tak
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.2
    • /
    • pp.1-8
    • /
    • 2001
  • This paper deals with magnetic field analysis and computation of cogging torque using an analytical method in Interior Permanent Magnet Motor (IPMM). The magnetic field is analyzed by solving space harmonics field analysis due to magnetizing and the cogging torque is analyzed by combining field analysis with relative permeance. In reducing cogging torque, the inferences of various design variable and magnetizing distribution are investigated. It is shown that the slot and pole ratio (the pole-arc / pole-pitch ratio) combination has a significant effect on the cogging torque and presents a optimal flux barrier shape to reduce the cogging torque. The validity of the proposed technique is confirmed with 2-D Finite Element(FE) analysis.

Analysis and Design of Outer-Rotor Type BLDC Motor by Permeance Method (자기저항법을 이용한 외전형 BLDC 모터의 해석 및 설계)

  • Choi, Myung-Jong;Kim, Sun-Dai;Chung, Tae-Kyung
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.86-88
    • /
    • 1995
  • Outer-rotor type brushless motor is designed to run at more constant speed because of large inertia comparing with inner-rotor type. The constant speed is acquired by increasing inertia. Also, the generating torque is proportional to the rotor volume, i. e. rotor diameter. The main idea in this study is to design and analyze the outer-rotor type brushless motor by permeance method with given outer dimension.

  • PDF