• Title/Summary/Keyword: Permeable coastal structures

Search Result 16, Processing Time 0.018 seconds

A Study of the Numerical Model on the Interaction between Irregular Waves and Permeable Coastal Structures (투수성해안구조물과 불규칙파의 상호작용에 관한 수치모델 연구)

  • 김종욱;남인식;윤한삼;류청로
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.186-195
    • /
    • 2001
  • The purpose of this study is to develop the time-dependent, one-dimensional numerical model on the interaction between irregular waves and two-layer permeable coastal structures, by extending and modifying the numerical model PBREAK(Wurjanto and Kobayashi, 1992) which is applicable only to one-layer permeable coastal structures. The two-layer permeable coastal structure consists of two permeable underlayers with different permeable media resting on an impermeable slope and an armor layer covering the permeable underlayer. The numerical model of this study simulates the wave over rough permeable underlayer of arbitrary geometry as well as the waves inside two-permeable underlayers of arbitrary thickness for specified normally-incident irregular waves. The utility of the numerical model is founded from comparing with PBREAK and the four hydraulic model tests under irregular waves. The sensitivities of computed results according to typical parameters(porosity, stone diameter, horizontal width of the permeable underlayer) and major factors(friction factor of primary armor layer etc.) discussed.

  • PDF

An Application of CADMAS-SURF to the Wave run-up in Permeable Coastal Structures (투과성 해안구조물의 Wave Run-up에 대한 CADMAS-SURF의 적용)

  • YOON HAN-SAM;CHA JONG-HO;KANG YOON-KOO
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.4 s.65
    • /
    • pp.49-55
    • /
    • 2005
  • We constructed and demonstrated a numerical CADMAS-SURF(V4.0) model that reproduces the wave run-up characteristics on the slope of coastal structures and applied it to a permeable coastal structure. We also compared the numerical model with published experimental results on the hydrodynamic phenomena of structures and some numerical results for a modified Pbreak model. In conclusion, the CADMAS-SURF model efficiently simulated wave run-up on the slope of a permeable coastal structure. The inflow/outflow effects from the porous structure boundary were approximately $15\%$ more than with the modified Pbreak model. Nevertheless, the descriptions of the internal hydraulic characteristics still could not be full!! exacted from the result(Fig. 1 참조)s obtained in our model experiment.

Numerical modeling of wave run-up and internal setup on and in permeable coastal structures (투과성해안구조물의 소상파 및 내부수위변동에 관한 수치모델링)

  • 남인식;윤한삼;김종욱;류청로
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.172-179
    • /
    • 2001
  • A numelical model has been developed for the permeable coastal structures to simulate hydraulic characteristics on the permeable slopes, which interact with internal flow field of the structures. The model includes hydraulics in the porous medium. Numerical model was calibrated using hydraulic model experiments performed in 2-D wave flume in the Institute of Orean Hydraulics in PKNU. Good agreement were obtained with the model which employed inertia resistance term than with the conventional model, PBREAK.

  • PDF

Numerical Modeling of Wave Run-up and Internal Set-up on and in Permeable Coastal Structures (투과성 해안구조물의 소상파 및 내부수위변동에 관한 수치모델링)

  • 남인식;김종욱;류청로
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.5
    • /
    • pp.34-40
    • /
    • 2002
  • A numerical model has been developed for the permeable coastal structures to simulate hydraulic characteristics on the permeable slopes, which interact with internal four field the structures. The model includes hydraulics in the porous medium. Numerical model was calibrated using hydraulic model experiments performed in 2-D wave flume in the Institute of Ocean Hydraulics in PKNU. Better aggrements were obtained with the model which employed inertia resistance term than with the conventional model, PBREAK.

Numerical Simulation of Internal-External Wave Field Interaction in Permeable Coastal Structures (투과성 해안구조물 내-외부 파동장의 수리특성에 관한 순치모의)

  • Cha, Jong-Ho;Yoon, Han-Sam;Ryu, Cheong-Ro;Kang, Yoon-Koo
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.18-23
    • /
    • 2008
  • This study investigated interactions between the internal-external wave field of a permeable coastal structure consisting of rubble. The study examined the application criteria of an existing numerical model (CADMAS-SURF V.4.0) and proposed a modified method to provide reasonable results. In particular, the study focused on and emphasized the water surface profiles in front of a structure, wave run-up/run-down on a slope, and internal water level fluctuations due to the drag coefficient and porosity of a rubble mound structure. In conclusion, the result show that when the vertical fluctuations of the internal water levels in permeable coastal structures exhibited high-quality representation. Sane responses can be seen for wave run-up/run-down characteristics on its slopes.

Measurement and Numerical Model on Wave Interaction with Coastal Structure (해안구조물과 파랑상호작용에 관한 수치모델 및 실험)

  • Kim, In-Chul
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.1
    • /
    • pp.30-38
    • /
    • 2009
  • In recent years, there's been strong demand for coastal structures that have a permeability that serves water affinity and disaster prevention from wave attack. The aim of this study is to examine the wave transformation, including wave run-up that propagates over the coastal structures with a steep slope. A numerical model based on the nonlinear shallow water equation, together with the unsteady nonlinear Darcy law for fluid motion in permeable underlayer and laboratory measurements was carried out in terms of the free surface elevations and fluid particle velocities for the cases of regular and irregular waves over 1:5 impermeable and permeable slopes. The numerical results were used to evaluate the application and limitations of the PBREAK numerical model. The numerical model could predict the cross-shore variation of the wave profile reasonably, but showed less accurate results in the breaking zone that the mass and momentum influx is exchanged the most. Except near the wave crest, the computed depth averaged velocities could represent the measured profile below the trough level fairly well.

Study of Wave Absorbing Effect of Submerged Breakwater (잠제의 소파효과에 관한 실험적 연구)

  • Lee, Hyun-Jin;Shin, Moon-Seup
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.29-34
    • /
    • 2011
  • Various types of coastal structures have been constructed to prevent coastal disasters. Among these coastal structures, submerged breakwaters have been used more widely than all of the other coastal structures because of their excellent advantages in scenery effects, construction efficiency, and environmental benefits. This study investigated the potential of the horizontal plate submerged breakwater model. Usually, it is necessary for a submerged breakwater to minimize and compensate for the negative impacts on the marine environment and ecosystem caused by the marine construction. Thus, the prevention of coastal disasters was verified for this submerged breakwater model, regardless of its function as a fish reef. The purpose of this study was to investigate the hydraulic characteristics with changes in the crest width and porosity of a horizontal plate submerged breakwater and compare the results of this study with the results of other studies on permeable and impermeable submerged breakwaters.

A Numerical Study of Wave Transformation on a Permeable Structure Considering Porous Media Flow (투수층의 흐름을 고려한 투수성 구조물의 파랑변형에 관한 수치적 해석)

  • Kim, In-Chul
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.6 s.73
    • /
    • pp.35-40
    • /
    • 2006
  • In recent years, there's been strong demand for seawalls that havea gentle slope and permeability that serveswater affinity and disaster prevention from wave attack. The aim of this study is to examine wave transformation, including wave run-up that propagates on the coastal structures. A numerical model based on the weak nonlinear dispersive Boussinesq equation, together with the unsteady nonlinear Darcy law for fluid motion in permeable layer, is developed. The applicability of this numerical model is examined through Deguchi and Moriwaki's hydraulic model test on the permeable slopes. From this study, it is found that the proposed numerical model can predict wave transformation and run-up on the gentle slope with a permeable layer, but can't show accurate results for slopes steeper than about 1:10.

Experimental Study for Wave Transmission Coefficients of Submerged Structure : I. Permeable Type Structure (수중구조물의 파고전달계수 산정 실험 : I. 투과형 수중구조물)

  • Lee, Jong-In;Bae, Il Rho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.5
    • /
    • pp.485-496
    • /
    • 2020
  • Submerged structures such as low-crested breakwaters and artificial reefs have been commonly used for coastal protection. In this study, two-dimensional laboratory experiments were conducted in a wave flume to investigate the wave transmission phenomena of permeable type submerged structures armored by Tetrapods. Different cases of the experimental conditions were included by relative crest depth, relative freeboard, relative crest width, wave steepness and so on. An empirical formula from the experimental data was proposed to predict the wave transmission coefficients over various specifications and structural designs of the permeable type submerged structure. The proposed formula successfully predicted the wave transmission coefficients. In this study, the proposed empirical formula of the wave transmission over the submerged structure was improved from the existing formula.

Nonlinear Dynamic Responses among Wave, Submerged Breakwater and Seabed ($\cdot$수중방파제$\cdot$지반의 비선형 동적응답에 관한 연구)

  • HAN DONG SOO;KIM CHANG HOON;YEOM CYEONG SEON;KIM DO SAM
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.6 s.67
    • /
    • pp.35-43
    • /
    • 2005
  • Recently, various-shaped coastal structures have been studied and developed. Among them, the submerged breakwater became generally known as a more effective structure than other structures, bemuse it not only serves its original function, but also has the ability to preserve the coastal environment. Most previous investigations have been focused on the wave deformation and energy dissipation due to submerged breakwater, but less interest was given to their internal properties and dynamic behavior of the seabed foundation under wave loadings. In this study, a direct numerical simulation (DNS) is newly proposed to study the dynamic interaction between a permeable submerged breakwater aver a sand seabed and nonlinear waves, including wave breaking. The accuracy of the model is checked by comparing the numerical solution with the existing experimental data related to wave $\cdot$ permeable submerged breakwater $\cdot$ seabed interaction, and showed fairly nice agreement between them. From the numerical results, based on the newly proposed numerical model, the properties of the wave-induced pore water pressure and the flow in the seabed foundation are studied. In relation to their internal properties, the stability oj the permeable submerged breakwater is discussed.