• Title/Summary/Keyword: Permeability coefficients

Search Result 158, Processing Time 0.029 seconds

Effect of Rock Mass Properties on Coupled Thermo-Hydro-Mechanical Responses at Near-Field Rock Mass in a Heater Test - A Benchmark Sensitivity Study of the Kamaishi Mine Experiment in Japan

  • Hwajung Yoo;Jeonghwan Yoon;Ki-Bok Min
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.1
    • /
    • pp.23-41
    • /
    • 2023
  • Coupled thermo-hydraulic-mechanical (THM) processes are essential for the long-term performance of deep geological disposal of high-level radioactive waste. In this study, a numerical sensitivity analysis was performed to analyze the effect of rock properties on THM responses after the execution of the heater test at the Kamaishi mine in Japan. The TOUGH-FLAC simulator was applied for the numerical simulation assuming a continuum model for coupled THM analysis. The rock properties included in the sensitivity study were the Young's modulus, permeability, thermal conductivity, and thermal expansion coefficients of crystalline rock, rock salt, and clay. The responses, i.e., temperature, water content, displacement, and stress, were measured at monitoring points in the buffer and near-field rock mass during the simulations. The thermal conductivity had an overarching impact on THM responses. The influence of Young's modulus was evident in the mechanical behavior, whereas that of permeability was noticed through the change in the temperature and water content. The difference in the THM responses of the three rock type models implies the importance of the appropriate characterization of rock mass properties with regard to the performance assessment of the deep geological disposal of high-level radioactive waste.

An Experimental Study on the Engineering Characteristics Analysis of Unsaturated Weathered Granite Soil (불포화된 화강풍화토에 대한 공학적 특성분석을 위한 실험적 연구)

  • Kim, Joon-Seok
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.3
    • /
    • pp.577-585
    • /
    • 2020
  • Purpose: The presence of the matric suction in unsaturated soil increases the stability of the slope, but the reduction of the matric suction due to precipitation can cause sudden slope failure, resulting in a major disaster. In this paper, engineering characteristics in unsaturated state were analyzed for granite weathering soil, which is the representative mountain soil of Korea. Method: Experiments and analysis were conducted on granulated weathering soil as unsaturated shear strength relationships for moisture characteristic curves, unsaturated injection curves, and matric suction under unsaturated conditions. Result: It was analyzed that a rapid change in the matric suction for volumetric water content occurs compared to the case where the particle size distribution is poor and the particle size distribution is good. A good case for the particle size distribution indicates a relatively small permeability coefficient at the same matric suction capacity compared to a poor case. The greater thematric suction, the greater the shear strength. Conclusion: For Korea's representative soil, granulated weathering soil, the functional characteristic curves, unsaturated permeability coefficients, unsaturated shear strength, etc., which are engineering characteristics in unsaturated state, were tested to secure each correlation.

Gas Transport Properties of Soluble Polyimides Containing Alicyclic Dianhydride (지환족 다이안하이드라이드를 포함하는 용해성 폴리이미드의 기체투과특성)

  • Kim, Eun Hee;Park, Chae Young;Kim, Jeong-Hoon
    • Membrane Journal
    • /
    • v.24 no.2
    • /
    • pp.100-106
    • /
    • 2014
  • In this work, soluble polyimides were synthesized and characterized from 5-(2,5-dioxotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride (DOCDA) and two diamines such as 4,4'-diaminodiphenylether (ODA), 1,4-phenylenediamine (p-PDA). Their thermal properties were analyzed with differential scanning calorimeter (DSC). The gas permeability coefficients (P) and ideal selectivity for $CH_4$ and $CO_2$ of the prepared polyimide membranes were measured with a time-lag apparatus. DOCDA-ODA, DOCDA-p-PDA showed good permeability and selectivity; the permeabilities of $CO_2$ was 6.10, 0.74 barrers and the selectivity of $CO_2/CH_4$ were 67.03, 46.25, respectively. Therefore, DOCDA-ODA showed good possibility as gas separation membrane.

Characteristics of Environment-Friendly Porous Polymer Concrete for Permeable Pavement

  • Kim, Young-Ik;Sung-Chan, Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.7
    • /
    • pp.25-33
    • /
    • 2005
  • This study was performed to develop environment-friendly porous polymer concrete utilizing recycled aggregates [RPPC] for permeable pavement of uniform quality with high permeability and flexural strength as well as excellent freezing and thawing resistance. The void ratios of RPPC are in the range of 15$\sim$$24\%$, showing the tendency that it is reduced to a great extent as the mixing ratio of the binder increases. The compressive and flexural strength of RPPC are in the range of 19$\sim$26 MPa and 6.2$\sim$7.4 MPa, respectively. Also, it shows a tendency to increase as the mixing ratio of the binder and filler increases. The permeability coefficients of RPPC are in the range of $6.3\times$$10_{-1}$$\sim$$1.5\times$$10_{-2}$cm/s. The flexural loads of RPPC are in the range of 18$\sim$32 KN. The weight reduction ratios obtained from the test for freezing and thawing resistance are in the range of 1.1$\sim$$2.4\%$ after 300 cycles of repeated freezing and thawing of the specimen for all mixes. The relative compressive strengths of RPPC after 300 cycles of freezing and thawing against the compressive strength before freezing and thawing test are in the range of 89$\sim$$96\%$.

Evaluation of Forward Osmosis (FO) Membrane Performances in a Non-Pressurized Membrane System (비가압식 막 공정을 통한 정삼투막 성능 평가)

  • Kim, Bongchul;Boo, Chanhee;Lee, Sangyoup;Hong, Seungkwan
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.292-299
    • /
    • 2012
  • The objective of this study is to develop a novel method for evaluating forward osmosis (FO) membrane performances using a non-pressurized FO system. Basic membrane performance parameters including water (A) and solute (B) permeability coefficients and unique parameter for FO membrane such as the support layer structural parameter (S) were determined in two FO modes (i.e., active layer faces feed solution (AL-FS) and active layer faces draw solution (AL-DS)). Futhermore, these parameters were compared with those determined in a pressurized reverse osmosis (RO) system. Theoretical water flux was calculated by employing these parameters to a model that accounts for the effects of both internal and external concentration polarization. Water flux from FO experiment was compared to theoretical water fluxes for assessing the reliability of those parameters determined in three different operation modes (i.e., AL-FS FO, AL-DS FO, and RO modes). It is demonstrated that FO membrane performance parameters can be accurately measured in non-pressurized FO mode. Specifically, membrane performance parameters determined in AL-DS FO mode most accurately predict FO water flux. This implies that the evaluation of FO membrane performances should be performed in non-pressurized FO mode, which can prevent membrane compaction and/or defect and more precisely reflect FO operation conditions.

Analyses of Correlation Between Groundwater Movement and Tidal Effect in West Costal Landfill Area (서해안 매립지 내 지하수유동과 조석에 관한 상관성 분석)

  • Park Jong-Oh;Song Moo-Yaung;Park Chung-Hwa
    • The Journal of Engineering Geology
    • /
    • v.16 no.3 s.49
    • /
    • pp.293-300
    • /
    • 2006
  • The groundwater movement in the west costal landfill area was analyzed by measuring N value by Standard Penetration Test, coefficient of permeability by falling head method, linear structure analysis by Digital Elevation Method, groundwater flow direction and rate by flowmeter logging due to tidal variation in the each borehole. The coefficients of permeability of the weathered zone and of the marine deposit showed similar values although some values of weathered zone show smaller values than those of the marine deposit. The major groundwater flow and rate in the marine deposit observed as east-west direction due to tidal variation, but on the other hand it was observed as N45E in weathered zone which is the major direction of the linear structures in the area. 2 hours delayed changes of the groundwater flow direction was observed during the 24 hours observation, and it seems to be a travel time of the tidal wave which cause the continuous change of the hydaulic gradient of the groundwater.

A Qualitive Research of N2, O2 Permeation Property in PMDA/ MDA- Phenylene Diamine Copolyimide (PMDA/MDA-Phenylene diamine 계열의 공중합체막에서의 산소, 질소 투과 특성의 정성적 고찰)

  • Lee, Kyung-Rok;Na, Seong-Sun;Kim, Jong-Pyo;Min, Byoung-Ryul
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.13-19
    • /
    • 1998
  • Copolyimide membranes of different chemical structure based on pyromellitic dianhydride (PMDA)/methylendianiline(MDA) were prepared by varying their chemical compositions with adding meta-phenylendiamine (MPD), para- phenylendiamine (PPD), 2,4,6- trimethyl-1,3-phenylenediamine(TriMeMPD) as a co-monomer. The $N_2$ and $O_2$ permeation properties are qualitatively correlated to specific free volume and intersegmental distance of membrane. The partial replacement of MDA with MPD or PPD caused in the PMDA/MDA based membranes increase in density, and decrease in free volume, d-spacing, consequently resulted in decreased permeability coefficient. In the case of TriMeMPD, opposite results were observed. In all membranes, the permeability coefficients were pressure independent, and membranes which have high permeability coefficient showed low $N_2/O_2$ ideal separation factor as an usual manner. The permeability coefficient also increased with temperature and $N_2/O_2$ ideal separation factor decreased. The increase ratio of the $N_2$ permeability coefficient was larger than that of $O_2$.

  • PDF

Physical Properties of Recycled Sidewalk Pavement Using Wood Chip (Wood Chip을 사용한 자원순환형 보도 포장체의 물성에 관한 연구)

  • Yu, Hyeok-Jin;Choi, Jae-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.91-96
    • /
    • 2010
  • The purpose of this study is to find problems about pedestrian road of tourist resort and to make new type of sidewalk pavement with wood chip and binder using urethane resin on the parks and tourist resort. The wood chip pavement has new economics and durability with comfortable texture. Samples of these pavement materials were tested for tensile strength, permeability and ball rebound value. Also, after immersion for 24 hours, tensile strength, samples' thickness and weight were measured and discussed the strength reduction according to the water immersion. Tensile strength experimentation was examined on dry condition and water immersion. The result of examination on dry condition was 1.06MPa and on water immersion was 0.67MPa. The results showed 36.8% decreasing rate of tensile strength. Permeability experiment test based on field permeability method of pavement were conducted as a result, permeability coefficients were in the range of 0.67~0.78mm/s that all exceeds object permeability coefficient. Elasticity experiment was based on elasticity test method of Japan road association. GB coefficient was 21% and SB coefficient was 10%. GB coefficient and SB coefficient increased if fine aggregate were increased.

  • PDF

Assessment of Groundwater Contamination Vulnerability by Geological Characteristics of Unsaturated Zone (불포화대 지질특성에 따른 지하수오염취약성 평가)

  • Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.727-740
    • /
    • 2018
  • The media in the undersaturated zone is defined as the uppermost layer of the water table at which the groundwater is unsaturated or saturated discontinuously. The properties of the unsaturated zone can affect the reduction of contaminants that flow from the lower part of soil to the water table. In recent, there have been problems in evaluating groundwater contaminations vulnerability because weighted value for permeability is given, regardless of anisotropy and heterogeneity in the unsaturated media. Geological media have various ranges of permeability. When applying the weighted value, representative of permeability for grain sizes standardized, to construction of contamination vulnerability, it will produce more exaggerated result than the case that considers unsaturated geological properties. In this study, we performed laboratory column tests considering two sets of the unsaturated layers in order to investigate the permeability in anisotropic unsaturated zone with anisotropy. On the basis of the tests, average permeability coefficients were calculated considering the properties of unsaturated media obtained from drill cores in the field. The final contamination vulnerability map constructed shows that the contamination vulnerability map applying the properties of geological media of the unsaturated zone coincides much better with the results measured in the field, compared to the case of contamination vulnerability considering the weighted value in the unsaturated zone.

A Study on the Characteristics of Wave Forces on Artificial Reefs (착저식 인공어초에 작용하는 파력특성에 관한 연구)

  • RYU Cheong-Ro;KIM Hyeon-Ju
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.5
    • /
    • pp.605-612
    • /
    • 1994
  • The methods to determine the hydrodynamic coefficients for the fixed type artificial reefs which were constructed to control ecological system in coastal waters are compared and discussed by model test results. To calculate the wave forces, least square method show good agreement with the experimental results and more stability than maximum force component method or Fourier decomposition method. This modified least square method of weighting the square of measured force turned out to be the most feasible method for maximum force. Using the feasible method, hydrodynamic characteristics for artificial reefs on uniform slopes offshore and breaking zone were studied. They were properly related to Keulegan-Carpenter's number and found larger than previous results. Wave force coefficients for artificial reefs around breaking zone were distributed from 1.5 to 2.5, and the mean value was 2.0. Drag force components were more in evidence than inertia force in maximum force which is important parameter to evaluate stability for high-permeability structures. A formula for the calculation of the maximum force for artificial reefs design is proposed, using structural dimension, water particle velocity and Keulegan-Carpenter's number.

  • PDF