• Title/Summary/Keyword: Permeability Performance

Search Result 668, Processing Time 0.026 seconds

Review of Thermodynamic Sorption Model for Radionuclides on Bentonite Clay (벤토나이트와 방사성 핵종의 열역학적 수착 모델 연구)

  • Jeonghwan Hwang;Jung-Woo Kim;Weon Shik Han;Won Woo Yoon;Jiyong Lee;Seonggyu Choi
    • Economic and Environmental Geology
    • /
    • v.56 no.5
    • /
    • pp.515-532
    • /
    • 2023
  • Bentonite, predominantly consists of expandable clay minerals, is considered to be the suitable buffering material in high-level radioactive waste disposal repository due to its large swelling property and low permeability. Additionally, the bentonite has large cation exchange capacity and specific surface area, and thus, it effectively retards the transport of leaked radionuclides to surrounding environments. This study aims to review the thermodynamic sorption models for four radionuclides (U, Am, Se, and Eu) and eight bentonites. Then, the thermodynamic sorption models and optimized sorption parameters were precisely analyzed by considering the experimental conditions in previous study. Here, the optimized sorption parameters showed that thermodynamic sorption models were related to experimental conditions such as types and concentrations of radionuclides, ionic strength, major competing cation, temperature, solid-to-liquid ratio, carbonate species, and mineralogical properties of bentonite. These results implied that the thermodynamic sorption models suggested by the optimization at specific experimental conditions had large uncertainty for application to various environmental conditions.

Effect of Calcination Temperature on Electromagnetic Wave Absorption Properties of M-type Ferrite Composite (하소온도가 M형 페라이트 복합재의 전자파 흡수 특성에 미치는 영향)

  • Seong Jun Cheon;Jae Ryung Choi;Sang Bok Lee;Je In Lee;Horim Lee
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.289-296
    • /
    • 2023
  • In this study, we investigated the electromagnetic properties and microwave absorption characteristics of M-type hexagonal ferrites, which are known as millimeter-wave absorbing materials, according to their calcination temperature. The M-type ferrites synthesized using a molten salt-based sol-gel method exhibited a single-phase M-type crystal structure at calcination temperatures above 850℃. The synthesized particle size increased as well with the calcination temperature. Saturation magnetization increased gradually with increasing calcination temperature, but coercivity reached a maximum at 1050℃ and then rapidly decreased. After preparing a thermoplastic polyurethane (TPU) composite containing 70 wt% of M-type ferrites, we measured the complex permittivity and permeability in the Q-band (33-50 GHz) and V-band (50-75 GHz) frequency ranges, where ferromagnetic resonance occurred. Strong magnetic loss from ferromagnetic resonance occurred in the 50 GHz band for all composite samples. Based on the measured results, we calculated the reflection loss of the TPU/M-type ferrite composite. By calculating the reflection loss of the M-type ferrite composite, the M-type ferrite calcined at 1250℃ showed excellent electromagnetic wave absorption performance of more than -20 dB at 52 GHz with a thickness of about 0.5 mm.

Electromagnetic wave absorption characteristics in Ni-Mn-Zn Ferrite with varying Mn content and applied magnetic field (Ni-Mn-Zn ferrite의 합성과 Mn의 치환량 및 인가자장에 따른 전자기파 흡수 특성 연구)

  • Ji-Hye Lee;Sang-Min Lee;Young-Min Kang
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.294-302
    • /
    • 2023
  • Ni-Mn-Zn ferrite, Ni0.5-xMnxZn0.5Fe2O4 (0 ≤ x ≤ 0.5), was synthesized using the sol-gel method to investigate the crystal structure, microstructure, magnetic properties, high-frequency characteristics, and electromagnetic (EM) wave absorption characteristics as a function of Mn substitution. As the Mn content increased, a continuous decrease in saturation magnetization (MS) was observed with little change in coercivity (HC). Samples for each composition (x) exhibited strong EM wave absorption performance with first and second strong EM wave absorption regions satisfying minimum reflection loss, RLmin < -40 dB in the 1.5~2.5, 6~11 GHz range, respectively. The EM wave absorption in Ni-Mn-Zn ferrite depends on magnetic loss, and adjusting µ' and µ'' spectra by Mn substitution or H field allows control of the EM wave absorption frequency.

Carbon Nanosphere Composite Ultrafiltration Membranes with Anti-Biofouling Properties and More Porous Structures for Wastewater Treatment Using MBRs (분리막 생물반응기를 활용한 폐수처리를 위한 생물오염방지 특성 및 다공성 구조를 가진 탄소나노구체 복합 한외여과막)

  • Jaewoo Lee
    • Membrane Journal
    • /
    • v.34 no.1
    • /
    • pp.38-49
    • /
    • 2024
  • Wastewater treatment using membrane bioreactors has been extensively used to alleviate water shortage and pollution by improving the quality of the treated water discharged into the environment. However, membrane biofouling persistently holds back an MBR process by reducing the process efficiency. Herein, we synthesized carbon nanospheres (CNSs) with many hydrophilic oxygen groups and utilized them as an additive to prepare high-performance ultrafiltration (UF) membranes with hydrophilicity and porous pore structure. CNSs were found to form crescent-shaped pores on the membrane surface, increasing the mean surface pore size by about 40% without causing significant defects larger than bubble points, as the CNS content increased by 4.6 wt%. In addition, the porous pore structure of CNS composite membranes was also attributable to the CNS's isotropic morphologies and relatively low particle number density because the aforementioned properties contributed to preventing the polymer solution viscosity from soaring with the loading of CNS. However, too porous structure compromised the mechanical properties, such that CNS2.3 was the best from a comprehensive consideration including the pore structure and mechanical properties. As a result, CNS2.3 showed not only 2 times higher water permeability than CNS0 but also 5 times longer operation duration until membrane cleaning was required.

Fabrication and Hydrogen Separation Performance of Newly Created Ti-Based Alloy Membrane (신조성의 Ti-기반 합금 수소분리막의 설계 및 수소투과 성능)

  • Min Yeong Ko;Min Chang Shin;Xuelong Zhuang;Jae Yeon Hwang;Sung Woo Han;Si Eun Kim;Jung Hoon Park
    • Membrane Journal
    • /
    • v.34 no.2
    • /
    • pp.146-153
    • /
    • 2024
  • In this experiment, a Ti-based flat hydrogen separation membrane was designed and manufactured. In order to find a Ti-based hydrogen separation membrane of a new composition, the correlation between the physical-chemical properties and hydrogen permeability of various alloys was investigated. Based on this, two types of new alloy films (Ti14.2Zr66.4Ni12.6Cu6.8 (70 ㎛), Ti17.3Zr62.7Ni20 (80 ㎛)) was designed and manufactured. The manufactured flat hydrogen separation membrane was tested for hydrogen permeation using mixed gas (H2, N2) and sweep gas (Ar) at 300~500℃ and 1~4 bar. The Ti14.2Zr66.4Ni12.6Cu6.8 alloy film has a maximum flux of 16.35 mL/cm2 min at 500℃ and 4 bar, and the Ti17.3Zr62.7Ni20 alloy film has a maximum flux of 10.28 mL/cm2 min at 450℃ and 4 bar.

Study on Production Performance of Shale Gas Reservoir using Production Data Analysis (생산자료 분석기법을 이용한 셰일가스정 생산거동 연구)

  • Lee, Sun-Min;Jung, Ji-Hun;Sin, Chang-Hoon;Kwon, Sun-Il
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.4
    • /
    • pp.58-69
    • /
    • 2013
  • This paper presents production data analysis for two production wells located in the shale gas field, Canada, with the proper analysis method according to each production performance characteristics. In the case A production well, the analysis was performed by applying both time and superposition time because the production history has high variation. Firstly, the flow regimes were classified with a log-log plot, and as a result, only the transient flow was appeared. Then the area of simulated reservoir volume (SRV) analyzed based on flowing material balance plot was calculated to 180 acres of time, and 240 acres of superposition time. And the original gas in place (OGIP) also was estimated to 15, 20 Bscf, respectively. However, as the area of SRV was not analyzed with the boundary dominated flow data, it was regarded as the minimum one. Therefore, the production forecasting was conducted according to variation of b exponent and the area of SRV. As a result, estimated ultimate recovery (EUR) increased 1.2 and 1.4 times respectively depending on b exponent, which was 0.5 and 1. In addition, as the area of SRV increased from 240 to 360 acres, EUR increased 1.3 times. In the case B production well, the formation compressibility and permeability depending on the overburden were applied to the analysis of the overpressured reservoir. In comparison of the case that applied geomechanical factors and the case that did not, the area of SRV was increased 1.4 times, OGIP was increased 1.5 times respectively. As a result of analysis, the prediction of future productivity including OGIP and EUR may be quite different depending on the analysis method. Thus, it was found that proper analysis methods, such as pseudo-time, superposition time, geomechanical factors, need to be applied depending on the production data to gain accurate results.

Evaluation of the Usefulness of the Transmittance of Metal Filaments Fabricated by 3D Printers in Radiation Therapy (방사선 치료에서 3D 프린터로 제작된 금속 필라멘트의 투과율에 관한 유용성 평가)

  • Kwon, Kyung-Tae;Jang, Hui-Min;Yoon, Myeong-Seong
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.7
    • /
    • pp.965-973
    • /
    • 2021
  • Since radiation therapy is irradiated with high-energy X-rays in a variety of at least 20 Gy to 80 Gy, a high dose is administered to the local area where the tumor is located, and various side effects of some normal tissues are expected. Currently, in clinical practice, lead, a representative material, is used as an effort to shield normal tissues, but lead is classified as a heavy metal harmful to the human body, and a large amount of skin contact can cause poisoning. Therefore, this study intends to manufacture a measurement sheet that can compensate for the limitations of lead using the materials Tungsten, Brass, and Copper of the 3D printer of the FDM (Fused Deposition Modeling) method and to investigate the penetration performance. Tungsten mixed filament transmission measurement sheet size was 70 × 70 mm and thickness 1, 2, 4 mm using a 3D printer, and a linear accelerator (TrueBeam STx, S/N: 1187) was measured by irradiating 100 MU at SSD 100 cm and 5 cm in water using a water phantom, an ion chamber (FC-65G), and an elcetrometer (PTW UNIDOSE), and the permeability was evaluated. As a result of increasing the measurement sheet of each material by 1 mm, in the case of Tungsten sheet at 3.8 to 3.9 cm in 6 MV, the thickness of the lead shielding body was thinner than 6.5 cm, and in case of Tungsten sheet at 4.5 to 4.6 cm in 15 MV. The sheet was thinner than the existing lead shielding body thickness of 7 cm, and equivalent performance was confirmed. Through this study, the transmittance measurement sheet produced using Tungsten alloy filaments confirmed the possibility of transmission shielding in the high energy region. It has been confirmed that the usability as a substitute is also excellent. It is thought that it can be provided as basic data for the production of shielding agents with 3D printing technology in the future.

Preparation of Polymer Gel Electrolyte for EDLCs using P(VdF-co-HFP)/PVP (P(VdF-co-HFP)/PVP를 이용한 EDLC용 고분자 겔 전해질의 제조)

  • Jung, Hyun-Chul;Jang, In-Young;Kang, An-Soo
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.243-249
    • /
    • 2006
  • Porous polymer gel electrolytes (PGEs) based on poly(vinylidenefluoride-co-hexafluoropropylene) (P(VdF-co-HFP)) as a polymer matrix and polyvinylpyrolidone (PVP) as a pore-forming agent were prepared and electrochemical properties were investigated for an electric double layer capacitor (EDLC) in order to increase a permeability of an electrolyte into the PGE. Propylene carbonate (PC) and ethylene carbonate (EC) as plasticizers, and tetraethylammonium tetrafluoroborate ($TEABF_4$) as a supporting salt for the PGE were used. EDLC unit cells were assembled with the PGE and electrode comprising BP-20 and MSP-20 as activated carbon powders, Super P as a conducting agent, and P(VdF-co-HFP)/PVP as a mixed binder. Ion conductivity of PGEs increased with an increased PVP content and was the best at 7 wt% PVP, whereas electrochemical characteristics such as AC-ESR of unit cell were better in 3 wt%. And electrochemical characteristics of the unit cell with PGE were the best at a 33 : 33 weight ratio of PC to EC. Specific capacitance of a mixed plasticizer system of PE and EC was higher than that of pure PC. Ion conductivity of PGEs with a film thickness of $20{\mu}m$ was higher, but electrochemical characteristics of unit cells were higher for a $50{\mu}m$ membrane thickness. Also, the unit cell has shown the highest capacitance of 31.41 F/g and more stable electrochemical performance when PGE and electrode were hot pressed. Consequently, the optimum composition ratio of PGE for EDLCs was 23 : 66 : 11 wt% such as P(VdF-co-HFP) : PVP = 20 : 3 wt% and PC : EC = 44 : 22 wt%. In this case, $3.17{\times}10^{-3}S/cm$ of ion conductivity was achieved at the $50{\mu}m$ thickness of PGE for EDLCs. And the electrochemical characteristics of unit cells were $2.69{\Omega}$ of DC-ESR, 28 F/g of specific capacitance, and 100% of coulombic efficiency.