DOI QR코드

DOI QR Code

Fabrication and Hydrogen Separation Performance of Newly Created Ti-Based Alloy Membrane

신조성의 Ti-기반 합금 수소분리막의 설계 및 수소투과 성능

  • Min Yeong Ko (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Min Chang Shin (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Xuelong Zhuang (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Jae Yeon Hwang (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Sung Woo Han (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Si Eun Kim (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Jung Hoon Park (Department of Chemical and Biochemical Engineering, Dongguk University)
  • 고민영 (동국대학교 화공생물공학과) ;
  • 신민창 (동국대학교 화공생물공학과) ;
  • 장학룡 (동국대학교 화공생물공학과) ;
  • 황재연 (동국대학교 화공생물공학과) ;
  • 한성우 (동국대학교 화공생물공학과) ;
  • 김시은 (동국대학교 화공생물공학과) ;
  • 박정훈 (동국대학교 화공생물공학과)
  • Received : 2024.02.19
  • Accepted : 2024.04.01
  • Published : 2024.04.30

Abstract

In this experiment, a Ti-based flat hydrogen separation membrane was designed and manufactured. In order to find a Ti-based hydrogen separation membrane of a new composition, the correlation between the physical-chemical properties and hydrogen permeability of various alloys was investigated. Based on this, two types of new alloy films (Ti14.2Zr66.4Ni12.6Cu6.8 (70 ㎛), Ti17.3Zr62.7Ni20 (80 ㎛)) was designed and manufactured. The manufactured flat hydrogen separation membrane was tested for hydrogen permeation using mixed gas (H2, N2) and sweep gas (Ar) at 300~500℃ and 1~4 bar. The Ti14.2Zr66.4Ni12.6Cu6.8 alloy film has a maximum flux of 16.35 mL/cm2 min at 500℃ and 4 bar, and the Ti17.3Zr62.7Ni20 alloy film has a maximum flux of 10.28 mL/cm2 min at 450℃ and 4 bar.

본 실험에서는 Ti를 기반으로 한 평판 수소 분리막을 설계하여 제조하였다. 새로운 조성의 Ti를 베이스로 한 수소 분리막을 찾기 위하여 여러 합금들의 물리화학적 특성과 수소투과도 사이의 상관관계에 대해 조사하였다. 이를 바탕으로 신조성의 합금막 2종(Ti14.2Zr66.4Ni12.6Cu6.8 (70 ㎛), Ti17.3Zr62.7Ni20 (80 ㎛))을 설계 및 제조하였다. 제조된 평판 수소 분리막은 300~500℃, 1~4 bar의 조건에서 혼합 가스(H2, N2), sweep 가스(Ar)를 이용하여 수소 투과 실험을 진행하였다. Ti14.2Zr66.4Ni12.6Cu6.8 합금막은 500℃, 4bar에서 최대 16.35 mL/cm2 min의 flux를 가지며, Ti17.3Zr62.7Ni20 합금막은 450℃, 4 bar에서 최대 10.28 mL/cm2 min의 flux를 가진다.

Keywords

Acknowledgement

본 연구는 한국전력공사의 2021년 선정 기초연구개발 과제 연구비에 의해 지원되었습니다. (과제번호: R21XA01-30)

References

  1. H. Hwang, Y. Lee, N. Kwon, S. Kim, Y. Yoo, and H. Lee, "Economic feasibility analysis of an overseas green hydrogen supply chain", Trans. Korean Hydrogen New Energy Soc., 33, 616-622 (2022).  https://doi.org/10.7316/KHNES.2022.33.6.616
  2. M. Kim, S. Jeon, and T. Jyung, "Analysis of hydrogen sales data at hydrogen charging stations", J. Hydrogen New Energy, 34, 246-255 (2023).  https://doi.org/10.7316/JHNE.2023.34.3.246
  3. D. Jansen, M. Gazzani, G. Manzolini, E. van Dijk, and M. Carbo, "Pre-combustion CO2 capture", Int. J. Greenhouse Gas Control, 40, 167-187 (2015).  https://doi.org/10.1016/j.ijggc.2015.05.028
  4. M. Nordio, S. Soresi, G. Manzolini, J. Melendez, M. V. S. Annaland, D. A. P. Tanaka, and F. Gallucci, "Effect of sweep gas on hydrogen permeation of supported Pd membranes: Experimental and modeling", Int. J. Hydrogen Energy, 44, 4228-4239 (2019).  https://doi.org/10.1016/j.ijhydene.2018.12.137
  5. S. K. Dwivedi and M. Vishwakarma, "Hydrogen embrittlement in different materials: A review", Int. J. Hydrogen Energy, 43, 21603-21616 (2018).  https://doi.org/10.1016/j.ijhydene.2018.09.201
  6. S. Hara, N. Hatakeyama, N. Itoh, H.-M. Kimura, and A. Inoue, "Hydrogen permeation through palladium-coated amorphous Zr-M-Ni (M = Ti, Hf) alloy membranes", Desalination, 144, 115-120 (2002).  https://doi.org/10.1016/S0011-9164(02)00298-9
  7. E. Yan, H. Huang, S. Sun, Y. Zou, H. Chu, and L. Sun, "Development of Nb-Ti-Co alloy for high-performance hydrogen separating membrane", J. Membr. Sci., 565, 411-424 (2018).  https://doi.org/10.1016/j.memsci.2018.08.060
  8. W. Gordy and W. J. O. Thomas, "Electronegativities of the elements", J. Chem. Phys., 24, 439-444 (1956).  https://doi.org/10.1063/1.1742493
  9. Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, and P. K. Liaw, "Solid-solution phase formation rules for multi-component alloys", Adv. Eng. Mater., 10, 534-538 (2008).  https://doi.org/10.1002/adem.200700240
  10. S. Fang, X. Xiao, L. Xia, W. Li, and Y. Dong, "Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses", J. Non-Cryst. Solids, 321, 120-125 (2003).  https://doi.org/10.1016/S0022-3093(03)00155-8
  11. S. Guo, C. Ng, J. Lu, and C. T. Liu, "Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys", J. Appl. Phys., 109, 103505 (2011). 
  12. S. Hara, N. Hatakeyama, N. Itoh, H. M. Kimura, and A. Inoue, "Hydrogen permeation through amorphous-Zr36-xHfxNi64-alloy membranes", J. Membr. Sci., 211, 149-156 (2003).  https://doi.org/10.1016/S0376-7388(02)00416-7
  13. E. Magnone, M. C. Shin, J. I. Lee, and J. H. Park, "Relationship between hydrogen permeability and the physical-chemical characteristics of metal alloy membranes", J. Membr. Sci., 674, 121513 (2023). 
  14. E. Yan, H, Huang, R. Min, P. Zhao, R. D. K. Misra, P. Huang, F. Xu, and L. Sun, "Effect of Pd overlayer and mixed gases on hydrogen permeation of Pd/Nb30Hf35Co35/Pd composite membranes", Int. J. Hydrogen Energy, 43, 14466-14477 (2018).  https://doi.org/10.1016/j.ijhydene.2018.05.133
  15. A. Alraeesi and T. Gardner, "Assessment of Sieverts law assumptions and 'n'values in palladium membranes: Experimental and theoretical analyses", Membranes, 11, 778 (2021). 
  16. K. Nagashio and K. Kuribayashi. "Experimental verification of ribbon formation process in chill-block melt spinning", Acta Mater., 54, 2353-2360 (2006).  https://doi.org/10.1016/j.actamat.2006.01.025
  17. W. D. Davis, "Diffusion of gases through metals. I. Diffusion of hydrogen through palladium", Knolls Atomic Power Lab., Niskayuna, NY, United States (1954).