• Title/Summary/Keyword: Permanent-Magnet Synchronous Generator (PMSG)

Search Result 88, Processing Time 0.036 seconds

A Novel Skewed-Type Iron Slot Wedge for Permanent Magnet Synchronous Generators for Improving Output Power and Reducing Cogging Torque

  • Kang, Sun-Il;Moon, Jae-Won;You, Yong-Min;Lee, Jin-Hee;Kwon, Byung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.243-250
    • /
    • 2015
  • This paper proposes a novel skewed-type iron slot wedge that can improve both the cogging torque and the output power of a permanent magnet synchronous generator (PMSG). Generally the open slot structure is adopted in a PMSG due to its convenient winding work, but the high cogging torque is undesired. Firstly, an iron slot wedge was utilized to reduce the cogging torque of an open slot type PMSG. However, the output power of the machine decreased rapidly with this method. Thus, a proposed skewed type iron slot wedge is presented to improve the output power as well as the cogging torque as compared to the open slot type. Shape optimization of the skewed-type iron slot wedge is performed to simultaneously maximize the output power and reduce the cogging torque. The Kriging model based on the Halton sequence method and a genetic algorithm are used to optimize the design.

Control and Analysis of Vienna Rectifier Used as the Generator-Side Converter of PMSG-based Wind Power Generation Systems

  • Zhao, Hongyan;Zheng, Trillion Q.;Li, Yan;Du, Jifei;Shi, Pu
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.212-221
    • /
    • 2017
  • Permanent-Magnet Synchronous Generators (PMSGs) are used widely in Wind Power Generation Systems (WPGSs), and the Vienna rectifier was recently proposed to be used as the generator-side converter to rectify the AC output voltage in PMSG-based WPGS. Compared to conventional six-switch two-level PWM (2L-PWM) converters, the Vienna rectifier has several advantages, such as higher efficiency, improved total harmonic distortion, etc. The motivation behind this paper is to verify the performance of direct-driven PMSG wind turbine system based-Vienna rectifier by using a simulated direct-driven PMSG WPGS. In addition, for the purpose of reducing the reactive power loss of PMSGs, this paper proposes an induced voltage sensing scheme which can make the stator current maintain accurate synchronization with the induced voltage. Meanwhile, considering the Neutral-Point Voltage (NPV) variation in the DC-side of the Vienna rectifier, a NPV balancing control strategy is added to the control system. In addition, both the effectiveness of the proposed method and the performance of the direct-driven PMSG based-Vienna rectifier are verified by simulation and experimental results.

A Study on Design and Performance Analysis of a Prototype Permanent Magnet Synchronous Generator (영구자석 동기발전기의 설계 및 시제품 특성 분석에 관한 연구)

  • Oh, Jin-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.7
    • /
    • pp.75-80
    • /
    • 2014
  • The small wind turbines has the merits of setting up with low costs by individuals, and get the energy saving effects that, it has the secured, separate markets from the big range systems, and the developing of it is continuously proceeding. The objective of this paper is to provide the design characteristics analysis of a permanent magnet synchronous generator(PMSG) skewed for magnet of rotor, the main advantage to be explored with the use of a split core design is the reduction in manufacturing costs and its simplicity in manufacture, compared to the manufacturing costs of a core skew PM machine. This thesis is aiming mainly analyzing the characteristics of the prototype to verify through Finite Element Method(FEM) and tests.

Design of 3MW Class Outer Rotor Type PMSG for Wind Turbine (풍력발전용 3MW급 외부회전자형 영구자석 동기발전기 설계)

  • Kim, Tae-Hun
    • New & Renewable Energy
    • /
    • v.6 no.4
    • /
    • pp.41-49
    • /
    • 2010
  • Over the last decade, wind turbine industry has rapidly increased around world. These days many parts of the wind generators are induction generator. But it has some problems such as gearbox failure, rotor excitation and maintenance. Thus many manufacturers are considered permanent magnet synchronous generator named PMSG and direct drive. PMSG uses NdFeB magnet has many the advantage compare with induction generator. In this study, 3MW class outer rotor type PMSG for wind turbine is proposed. The generator features 2.6m stator outer radius, 1200mm stator length, 81 pole pairs, 14 rated rpm, 42kN/$m^2$ shear force density and 94.2% efficiency. Design and analysis generator using FEM program. Then calculate and derivate no load voltage, losses, conductor temperature. To reduce total harmonic distortion and cogging torque, the stator is applied the stator skewing. And to evaluate the designed generator, compare with other generators by active mass per rating torque and torque density.

Design of Slot Wedge Shape for Reducing Cogging Torque in Outer Rotor Type Permanent Magnet Synchronous Generator with Open Slot Structure (개방형 슬롯 구조를 갖는 외전형 영구자석 동기발전기의 코깅 토크 저감을 위한 슬롯 ��지 형상 설계)

  • Kim, Bong-Ju;Park, Su-Kang;Moon, Jae-Won;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.936-938
    • /
    • 2011
  • This paper suggests the slot wedge shape for reducing the cogging torque of a gearless type direct-drive permanent magnet synchronous generator with open slot shape. To achieve this, we are designed the appropriate specifications of the permanent magnet synchronous generator by selected the appropriate material of slot wedge and various slot wedge shapes. The PMSG models were analyzed by finite element method. Finally, we have suggested appropriate material of slot wedges and its shape which has benefit to further reducing cogging torque and preventing decreasing of the generating power.

  • PDF

Modeling & Operating Algorithm of Islanding Microgrid with PMSG Wind Turbine and Diesel Generator (영구자석형 풍력-디젤 복합발전시스템 모델링 및 운전제어 알고리즘에 관한 연구)

  • Kim, Jae-Eon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6419-6424
    • /
    • 2015
  • Recently, high-cost energy storage systems are applying to hybrid generation systems with wind turbine and diesel generator in island areas for stable operation. But, this paper proposes an operating algorithm and modeling method of an islanding microgrid that is composed of PMSG(Permanent Magnet Synchronous Generator) and Diesel Generator applied in island areas without such energy storage system. Initially, the operating algorithm was proposed for frequency and voltage to be maintained within the proper ranges for the load and weather change. And then the modeling method were proposed for PMSG, WT-side AC/DC converter and Grid-side DC/AC converter. The proposed operating algorithm and modeling method were applied to a typical islanded microgrid with PMSG wind turbine and diesel generator. The frequency and voltage was kept within the permissible ranges and the proposed method was proven to be appropriate through simulations.

Flicker Mitigation in a Wind Farm by Controlling a Permanent Magnet Synchronous Generator (영구자석형 동기발전기를 이용한 풍력단지의 플리커 저감)

  • Hoan, Pham Van;Kim, Dae-Hyun;Ahn, Jin-Hong;Kim, Eel-Hwan;Oh, Seong-Bo;Kim, Ho-Chan;Kim, Se-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.12
    • /
    • pp.1163-1168
    • /
    • 2009
  • The power quality of wind energy becomes more and more important in connecting wind-farms to the grid, especially weak grid. This paper presents the simulation of a wind farm of a permanent magnet synchronous generator (PMSG) and a doubly fed induction generator (DFIG). Flicker mitigation is performed by using PMSG as a static synchronous compensator (STATCOM) to regulate the voltage at the point of common coupling (PCC). A benefit of the measure is that integrating two function of to control the active power flow and to reduce the voltage flicker in a wind farm. Simulation results show that controlling PMSG is an effective and economic measure in reducing the flicker during continuous operation of grid connected wind turbines regardless of short circuit capacity ratio, turbulence intensity and grid impedance angle.

RTDS based Transient Analysis of PMSG Type wind Power Generation System (RTDS를 이용한 영구자석형 동기발전기를 갖는 풍력발전시스템의 과도현상 해석)

  • Hwang, Chul-Sang;Kim, Gyeong-Hun;Kim, Nam-Won;Lee, Hyo-Guen;Seo, Hyo-Ryong;Park, Jung-Do;Yi, Dong-Young;Lee, Sang-Jin;Park, Min-Won;Yu, In-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.572-576
    • /
    • 2011
  • The operation of permanent magnet synchronous generator (PMSG) type wind power generation system (WPGS) can be affected by the utility condition. Consequently, transient condition of utility should be analyzed for the safe and reliable operation of WPGS. This paper presents transient analysis results of a PMSG type WPGS using real time digital simulator (RTDS). A fault condition was applied to the transient analysis of PMSG type WPGS as the transient grid condition. The simulation results were analyzed to show the operational characteristic of PMSG type WPGS under the transient phenomenon of utility.

A Study on Frequency Control and Active Power Control of Wind Turbine Generation System for PMSG (PMSG 풍력발전 시스템의 출력 제어 및 주파수 제어 연구)

  • Lee, Kwang-Soo;Kim, Mun-Kyeom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.5
    • /
    • pp.597-607
    • /
    • 2014
  • This paper proposes active power control and frequency support control schemes of wind turbine generation system by using modified Maximum Power Point Tracking(MPPT) of Permanent Magnet Synchronous Generator(PMSG). Most wind turbine generation system is completely decoupled from the power system and power output control with pitch control. According to the frequency deviation, however, MPPT control can not contribute to the frequency change of the power system due to its active power output control. For solving this, the de-loaded(DL) control scheme is constructed for the frequency support control, which is based on applying the active power output control in the rotor speed control of PMSG. The rotor speed by used in the proposed DL control scheme is increased more than the optimal rotor speed of MPPT, and then this speed improvement increases the saved kinetic energy(KE). In order to show the effectiveness of the proposed control scheme, the case studies have been performed using the PSCAD/EMTDC. The results show that the proposed active power output control scheme(DL control and KE discharge control) works properly and the frequency response ability of the power system can be also improved with the frequency support of wind farm.

Maximum Power Point Tracker for Permanent Magnet Synchronous Generator Based Wind Energy System using Fuzzy Logic Algorithm

  • Putri, Adinda Ihsani;Sastrowijoyo, Fajar;Choi, Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.93-94
    • /
    • 2011
  • The use of boost chopper in Permanent Magnet Synchronous Generator (PMSG) aims to capture maximum power at any wind speed condition. It is reached by adjusting the duty cycle of boost chopper. In this paper, fuzzy logic algorithm is used to find the duty cycle value which yields the maximum power output. This control scheme is verified by PSIM simulation. Another MPPT method is also simulated as a comparison.

  • PDF