• Title/Summary/Keyword: Permanent magnet actuator

Search Result 112, Processing Time 0.035 seconds

Stability Analyses of Magnetic Levitation Tables Using Repulsions of Permanent Magnets (영구자석에 의한 반발형 자기부상 테이블의 안정성 해석)

  • Choe, Gi-Bong;Jo, Yeong-Geun;Tadahiko Shinshi;Akira Shimokohbe
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.7
    • /
    • pp.36-42
    • /
    • 2002
  • This paper presents two actuators for levitation using repulsions of permanent magnet and two magnetic levitation tables using the actuators. Here, one actuator for levitation consists of one fixed magnet and one moving magnet, and the other actuator consists of two fixed magnets and one moving magnet. The moving part of the magnetic levitation table contains the moving magnets. repulsive forces caused by the permanent magnets are linearized, and then the equation of motion of the moving part of the table is derived. Using the equation of motion, stability conditions of the moving part are deduced. The stability conditions are analyzed for positional relations of the moving magnets and the minimum number of active control required for stable system. As a result, in the each case of magnetic levitation tables, the requirements for stabilization are expressed by the positional relations and the number of the active controls.

Linear Actuator using Magnetic Shield of Rotating Magnet Wheel (부분 자기 차폐된 마그네트 휠의 선형구동기로의 응용)

  • Shim, Ki-Bon;Park, Jun-Kyu;Lee, Sang-Heon;Jung, Kwang-Suk
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.923-925
    • /
    • 2008
  • As known generally, when permanent magnets whose poles are upward and downward in order, arranged into the circumferential direction rotate under the conducting plate, the rotating force acts on the plate as well as the repulsive force. If the magnetic field by the magnet wheel(the above rotating permanent magnets) is partially shielded, the magnet wheel over open region can be a linear induction motor. The distinct feature from induction motor is that the traveling magnet field is produced by the moving permanent magnet instead of ac current. Furthermore, a variation of the open region changes the direction of the thrust force. In this paper, we introduce a concept of the linear actuator using the magnet wheel. Under the above shielding condition, a few simulation results and its verification from a simple test setup are described.

  • PDF

Design and Performance Evaluation of Impact Type Actuator Using Magnetic Force (자기력을 이용한 충격형 액추에이터의 설계 및 성능 평가)

  • Min, Hyun-Jin;Lim, Hyung-Jun;Kim, Byung-Kyu;Kim, Soo-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1438-1445
    • /
    • 2002
  • For robotic endoscope, some researchers suggest pneumatic actuators based on inchworm motion. But, the existing endoscopes have not been replaced completely because human intestine is very sensitive and susceptible to damage. We design and test a new locomotion of robotic endoscope that allows safe maneuverability in the human intestine. The actuating mechanism is composed of two solenoids at each side and a single permanent magnet. When the current direction is reversed, repulsive force and attractive at the opposition side propels permanent magnet. Impact force against robotic endoscope transfers momentum from moving magnet to endoscope capsule. The direction and moving speed of the actuator can be controlled by adjustment of impact force. Modeling and simulation experiments are carried out to predict the performance of the actuator. Simulations show that force profile of permanent magnet is the dominant factor for the characteristic of the actuator. The results of simulations are verified by comparing with the experimental results.

Novel Design and Research for a High-retaining-force, Bi-directional, Electromagnetic Valve Actuator with Double-layer Permanent Magnets

  • You, Jiaxin;Zhang, Kun;Zhu, Zhengwei;Liang, Huimin
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.65-71
    • /
    • 2016
  • To increase the retaining force, a novel design for a concentric, bi-directional, electromagnetic valve actuator that contains double-layer permanent magnets is presented in this paper. To analyze the retaining-force change caused by the magnets, an equivalent magnetic circuit (EMC) model is established, while the EMC circuit of a double-layer permanent-magnet valve actuator (DLMVA) is also designed. Based on a 3D finite element method (FEM), the calculation model is built for the optimization of the key DLMVA parameters, and the valve-actuator optimization results are adopted for the improvement of the DLMVA design. A prototype actuator is manufactured, and the corresponding test results show that the actuator satisfies the requirements of a high retaining force under a volume limitation; furthermore, the design of the permanent magnets in the DLMVA allow for the attainment of both a high initial output force and a retaining force of more than 100 N.

Dynamic Characteristic of Permanent Magnetic Actuator (영구자석형 액추에이터의 동작 특성)

  • Seo, J.H.;Kim, H.K.;Joo, S.W.;Hahn, S.C.
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.24-26
    • /
    • 2004
  • For past decade, medium voltage circuit breakers have used the spring-driven mechanical system for interrupting of electric power. However, these mechanisms have many disadvantages of high power consumption, mechanical control components and electrical switching ones for the coil current. Recently, the vacuum interrupter operated by permanent magnet actuator gives outlook on improved characteristic, higher reliability and cost price reduction as well as the feature of simple structure and few components. This paper deals with the dynamic characteristics of permanent magnet actuator used in the medium voltage distribution systems. Coupled finite element method is used to analysis the dynamic characteristics of permanent magnetic actuator and we compared with those of conventional ones.

  • PDF

Analysis of Dynamic characteristic and design of permanent magnetic actuator (영구자석형 차단기의 특성해석 및 설계)

  • Seo J. H.;Kim H. K.;Joo S. W.;Hahn S. C.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1040-1042
    • /
    • 2004
  • For past decade, medium voltage circuit breakers have used the spring-driven mechanical system for interrupting of electric power. However, these mechanisms have many disadvantages of high power consumption, mechanical control components and electrical switching ones for the coil current. Recently, the vacuum interrupter operated by permanent magnet actuator gives outlook on improved characteristic, higher reliability and cost price reduction as well as the feature of simple structure and few components. This paper deals with the dynamic characteristics of permanent magnet actuator used in the medium voltage distribution systems. Coupled finite element method is used to analysis the dynamic characteristics of permanent magnetic actuator and we compared with those of conventional ones

  • PDF

Contact Parameter Computation and Analysis of Air Circuit Breaker with Permanent Magnet Actuator

  • Fang, Shuhua;Lin, Heyun;Ho, S.L.;Wang, Xianbing;Jin, Ping;Huang, Yunkai;Yang, Shiyou
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.595-602
    • /
    • 2013
  • An air circuit breaker (ACB) with novel double-breaker contact and permanent magnet actuator (PMA) is presented. Three-dimensional (3-D) finite element method (FEM) is employed to compute the electro-dynamic repulsion forces, including the Holm force and Lorentz force, which are acting on the static and movable contacts. The electro-dynamic repulsion forces of different contact pieces are computed, illustrating there is an optimal number of contact pieces for the ACB being studied. The electro-dynamic repulsion force of each contact, which varies from the outer position to the inner position, is also computed. Finally, the contacts of the double-breaker are manufactured according to the analyzed results to validate the simulations.

Change of Operating Characteristics of Latching Relay with Temperature (래칭 릴레이의 온도에 따른 동작 특성 변화)

  • Ryu, Jae-Man;Jin, In-Young;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.8
    • /
    • pp.520-524
    • /
    • 2017
  • Electrical relay in an essential part of smart grids, electrical vehicles, and LED lightning systems. Therefore, studying relay reliability is important. Relays using permanent magnet actuators (PMAs), which are energy efficient, are also in the spotlight. However, most of the permanent magnets used in PMAs have a characteristic wherein the magnetic flux decreases as the temperature increases. When the magnetic flux is reduced, the force acting on the actuator is reduced. Therefore, in this study, we measured the decrease in the relay operating speed with permanent magnet reduction due to temperature rise. In addition, changes in the bouncing phenomena due to magnetic flux reduction were analyzed. As a result, the operating speed of the relay has decreased and the bouncing phenomenon has not significantly changed.

A Study on the Permanent Magnet Overhang Effect in Permanent Magnetic Actuator Using 3D Equivalent Magnetic Circuit Network Method (3차원 등가자기회로망법을 이용한 영구자석형 액츄에이터의 영구자석 오버행 효과에 대한 연구)

  • Kwon, H.;Lim, S.Y.;Lee, J.;Kwon, S.Y.;Choi, S.G.;Baek, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.918-920
    • /
    • 2003
  • This paper presents the analysis of the permanent magnet overhang effect for permanent magnetic actuator. Generally, The overhang is often used to increase the force density in permanent magnet machineries. The overhang is especially profitable to reduce the volume after increasing the force density per volume when using the overhang effect of the permanent magnet. Therefore, 3D Equivalent Magnetic Circuit Network Method (3D EMCNM) has been used in this paper. According to the plunger position, flux distribution per the overhang length, and the holding force are quantitatively compared. Furthermore, an appropriate length of the overhang has been proposed. To confirm the accuracy of the analysis method, the results of 3D EMCNM and FEM(2D, 3D) are compared for the basic model.

  • PDF

Transient characteristics comparison of permanent magnet actuator by coil type (권선형태에 따른 permanent magnet actuator의 동작 특성 비교)

  • Yoon lel Joo;Min Kyung Jo;Hahn Sung Chin
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1016-1018
    • /
    • 2004
  • 최근 배전용 차단기의 조작방식은 스프링 구동 방식에서 영구자석 엑츄에이터(PMA) 구동방식으로 바뀌고 있다. PMA로 작동하는 중고압 차단기는 여자전류 권선의 수에 의해 단권선형과 이권선형으로 구분한다. 본 논문에서는 PMA의 동특성을 해석하기 위하여 유한요소법과 외부회로 방정식을 결합하였다. 가동부의 움직임을 고려하여 자계분포를 해석하였으며 가동부의 속도와 흡인력을 구하여 비교하였다. 해석된 결과는 PMA 설계에 이용될 수 있을 것으로 기대한다.

  • PDF