• 제목/요약/키워드: Perlite concrete

검색결과 30건 처리시간 0.028초

Effect of perlite powder on properties of structural lightweight concrete with perlite aggregate

  • Yan, Gongxing;Al-Mulali, Mohammed Zuhear;Madadi, Amirhossein;Albaijan, Ibrahim;Ali, H. Elhosiny;Algarni, H.;Le, Binh Nguyen;Assilzadeh, Hamid
    • Structural Engineering and Mechanics
    • /
    • 제84권3호
    • /
    • pp.393-411
    • /
    • 2022
  • A high-performance reactive powder concrete (RPC) has been readied alongside river sand, with 1.25 mm particle size when under the condition of 80C steam curing. As a heat and sound insulation, expanded perlite aggregate (EPA) provides economic advantages in building. Concrete containing EPA is examined in terms of cement types (CEM II 32.5R and CEM I 42.5R), doses (0, 2%, 4% and 6%) as well as replacement rates in this research study. The compressive and density of concrete were used in the testing. At the end of the 28-day period, destructive and nondestructive tests were performed on cube specimens of 150 mm150 mm150 mm. The concrete density is not decreased with the addition of more perlite (from 45 to 60 percent), since the enlarged perlite has a very low barrier to crushing. To get a homogenous and fluid concrete mix, longer mixing times for all the mix components are necessary due to the higher amount of perlite. As a result, it is not suggested to use greater volumes of this aggregate in RPC. In the presence of de-icing salt, the lightweight RPC exhibits excellent freeze-thaw resistance (mass is less than 0.2 kg/m2). The addition of perlite strengthens the aggregate-matrix contact, but there is no apparent ITZ. An increased compressive strength was seen in concretes containing expanded perlite powder and steel fibers with good performance.

Elaboration and characterization of fiber-reinforced self-consolidating repair mortar containing natural perlite powder

  • Benyahia, A.;Ghrici, M.;Mansour, M. Said;Omran, A.
    • Advances in concrete construction
    • /
    • 제5권1호
    • /
    • pp.1-15
    • /
    • 2017
  • This research project aimed at evaluating experimentally the effect of natural perlite powder as an alternative supplementary cementing material (SCM) on the performance of fiber reinforced self-consolidating repair mortars (FR-SCRMs). For this purpose, four FR-SCRMs mixes incorporating 0%, 10%, 20%, and 30% of natural perlite powder as cement replacements were prepared. The evaluation was based on fresh (slump flow, flow time, and unit weight), hardened (air-dry unit weight, compressive and flexural strengths, dynamic modulus of elasticity), and durability (water absorption test) performances. The results reveal that structural repair mortars confronting the performance requirements of class R4 materials (European Standard EN 1504-3) could be designed using 10%, 20%, and 30% of perlite powder as cement substitutions. Bonding results between repair mortars containing perlite powder and old concrete substrate investigated by the slant shear test showed good interlocking justifying the effectiveness of these produced mortars.

Flexural behavior of beams reinforced with either steel bars, molded or pultruded GFRP grating

  • Hadi, Muhammad N.S.;Almalome, Mohammed H.A.;Yu, Tao;Rickards, William A.
    • Steel and Composite Structures
    • /
    • 제34권1호
    • /
    • pp.17-34
    • /
    • 2020
  • This paper investigates the flexural behavior of concrete beams reinforced longitudinally with either steel bars, molded glass-fiber reinforced polymer (GFRP) grating mesh or pultruded glass-fiber reinforced polymer (GFRP) grating mesh, under four-point bending. The variables included in this study were the type of concrete (normal weight concrete, perlite concrete and vermiculite concrete), type of the longitudinal reinforcement (steel bars, molded and pultruded GFRP grating mesh) and the longitudinal reinforcement ratio (between 0.007 and 0.035). The influences of these variables on the load-midspan deflection curves, bending stiffness, energy absorption and failure modes were investigated. A total of fifteen beams with a cross-sectional dimension of 160 mm × 210 mm and an overall length of 2400 mm were cast and divided into three groups. The first group was constructed with normal weight concrete and served as a reference concrete. The second and third groups were constructed with perlite concrete and vermiculite concrete, respectively. An innovative type of stirrup was used as shear reinforcement for all beams. The results showed that the ultimate load of the beams reinforced with pultruded GFRP grating mesh ranged between 19% and 38% higher than the ultimate load of the beams reinforced with steel bars. The bending stiffness of all beams was influenced by the longitudinal reinforcement ratio rather than the type of concrete. Failure occurred within the pure bending region which means that the innovative stirrups showed a significant resistance to shear failure. Good agreement between the experimental and the analytical ultimate load was obtained.

Strength development of ground perlite-based geopolymer mortars

  • Celikten, Serhat;Isikdag, Burak
    • Advances in concrete construction
    • /
    • 제9권3호
    • /
    • pp.227-234
    • /
    • 2020
  • Raw perlite is a volcanic alumino-silicate and is used as aggregate in the construction industry. The high silica and alumina contained in the raw perlite allows the production of geopolymer mortar with the help of alkaline solutions. In this study, different geopolymer mortars are obtained by mixing ground perlite (GP), sodium hydroxide (NaOH), water and CEN standard sand and the strength and microstructure of these mortars are investigated. Mortar specimens are placed in the oven 24 hours after casting and kept at different temperatures and times, then the specimens are cured under laboratory conditions until the day of strength tests. After curing, unit weight, ultrasound pulse velocity, flexural and compressive strengths are determined. Experimental results indicate that the mechanical properties of the mortars enhance with increasing oven-curing period and temperatures as well as increasing NaOH molarity. In addition, SEM/EDS and XRD analyses are performed on the mortar specimens and the results are interpreted.

팽창 퍼라이트를 사용한 건축용 보드의 개발에 관한 실험적 연구 (An Experimental Study on Development of Building Board with Expanded Perlite)

  • 강승문;김대회;지석원;전현규;서치호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.919-924
    • /
    • 2001
  • The purpose of this study is to prepare the basic data for the development of building board with expanded perlite. Each paste was mixed with four levels of water cement ratio(30, 40, 50, 60%), and expanded perlite was substituted with four levels of substitutive ratio(20, 40, 60, 80%) for the each paste. The physical property, compressive strength, bending strength and thermal conductivity of each cement composite which is made through previously described method were analyzed and the result was as follow. In the case of 80 percent substitutive ratio, the cement composite had a mechanical defect which was resulted from lack of paste content. In the case of 40 and 60percent substitutive ratio, the cement composite had sufficient strength, light weight and low thermal conductivity for application to fire resisting board.

  • PDF

경량골재와 팽창펄라이트를 활용한 경량 시멘트복합체의 특성 (Quality Characteristics of Lightweight Cement Composite using Lightweight Aggregates and Expanded Perlite)

  • 김득모;문경주;소양섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.533-536
    • /
    • 2004
  • This study aims to manufacture and to evaluate lightweight cement composite using lightweight aggregate and expanded perlite. The expanded perlite and lightweight aggregates were mixed with cement, water, SP(superplasticizer), forming-agent and poly-propylene fiber. The specimens were cured at $20^{\circ}C$ for 24h and then at steam curing of $60^{\circ}C$, RH $100\%$ for 12h. As a result, We could make lightweight cement composite of satisfaction about ALC properties. However it is need to improve the properties of density and water absorption.

  • PDF

고강도콘크리트용 내화피복재로 활용하기 위한 경량모르타르의 역학적 성상 (Study on the Mechanical Properties of Lightweight Mortar for Fire Protection Covering Material in High Strength Concrete)

  • 임서형;유석형;문종욱
    • 한국화재소방학회논문지
    • /
    • 제25권5호
    • /
    • pp.8-13
    • /
    • 2011
  • 고강도 콘크리트는 화재 시 고온에 노출되어 폭렬현상이 발생된다. 폭렬은 철근노출과 함께 구조부재의 단면을 감소시키며, 이로 인하여 구조적 거동에 심각한 문제를 발생시킨다. 본 연구의 목적은 이러한 고강도 콘크리트의 내화피복재로 활용하기 것으로 퍼라이트와 폴리프로필렌 섬유로 경량모르타르를 제조하여 그 역학적 성상을 파악하는데 있다. 이에 따른 실험인자로는 물시멘트비, 골재시멘트비, 폴리프로필렌 섬유 첨가량이다. 연구결과 퍼라이트와 폴리프로필렌 섬유를 첨가함으로서 모르타르의 공극구조를 변화시킬 수 있었으며, 단위중량을 감소시킬 수 있었다. 또한, 고강도 콘크리트의 내화피복재로서 경량모르타르를 사용할 수 있는 가능성을 확인하였다.

Properties of recycled steel fibre reinforced expanded perlite based geopolymer mortars

  • Celikten, Serhat
    • Advances in concrete construction
    • /
    • 제13권1호
    • /
    • pp.25-34
    • /
    • 2022
  • The production of geopolymer is considered as a cleaner process due to much lower CO2 emission than that from the production of Portland cement. This paper presents a study of the potential use of recycled steel fibre (RSF) coming from the recycling process of the old tires in geopolymer mortars. Ground expanded perlite (EP) is used as a source of alumino-silicate and sodium hydroxide (NaOH=5, 10, 15, and 20M) is used as alkaline medium for geopolymer synthesis. RSFs were added to the mortar mixtures in four different volume fractions (0, 0.5, 1.0, and 1.5% of the total volume of mortar). The unit weight, ultrasound pulse velocity, flexural and compressive strength of expanded perlite based geopolymer mortar (EPGM) mixtures were determined. The microstructures of selected EPGMs were examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analyses. The optimum molarity of sodium hydroxide solution was found to be 15M for geopolymer synthesis by EP. The test results revealed that RSFs can be successfully used for fibre-reinforced geopolymer production.

폴리프로필렌섬유보강 경량 폴리머 시멘트 콘크리트의 내동해성에 관한 연구 (A Study on the Resistance for Frost Damage of Polypropylene Fiber Reinforced Light Weight Polymer Cement Concrete)

  • 소형석;소승영;소양섭;박종호;탁재호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.89-92
    • /
    • 1995
  • For the development of lilght weight cement concrete with high durability, this study used perlite and paper sludge ash by the light weight material, and polypropylene fiber by the reinforcment, and poly-acrylic ester emulsion by the matrix improvement. According to the increasing mixture ratio of fiber and use of polymer, the light weight polypropylene fiber reinforced polymer cement ratio of fiber and use of polymer, the light weight polypropylene fiber reinforced polymer cement concrete were showed high resistance for frost damage.

  • PDF

펄라이트를 혼합한 내화모르타르의 기초적 물성 (Fundamental Properties of Fireproofing Mortar Containg Perlite)

  • 최연왕;문대중;김경환;하상우;정재권
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.605-608
    • /
    • 2006
  • The purpose of this research is to develop the fireproofing mortar through the improved fireproofing properties. Therefore, after manufactured the mortor by changing the mixture rate of the perlite(PL) in three level, we investigated air content, flow value and compressive strength. As a result of this research, as the mixture rate was increased and the air content was also increased. But the flow ability and the compressive strength of the mortar were comparably decreased. Beside, we also found that there is efficiency of the lightweight by mixed PL.

  • PDF