• Title/Summary/Keyword: Peristaltic flow

Search Result 5, Processing Time 0.115 seconds

Effect of High Reynolds Number on Hydromagnetic Peristaltic Flow in an Inclined Channel Using Finite Element Method

  • Javed, Tariq;Hamid, A.H.;Ahmed, B.;Ali, N.
    • Journal of the Korean Physical Society
    • /
    • v.71 no.12
    • /
    • pp.950-962
    • /
    • 2017
  • An analysis of the peristaltic flow in an inclined channel for different wave forms is carried out in this paper. The developed mathematical model is represented by a set of partial differential equations. The finite element method is implemented to solve the governing equations for stream function and vorticity. The obtained results are valid beyond the long wavelength and low Reynolds number limits. Important features of peristaltic transport are discussed for the variation of magnetic field, Reynolds and wave numbers. The obtained results, when compared with the results available in literature are in good agreement.

Bionic Study of Variable Viscosity on MHD Peristaltic Flow of Pseudoplastic Fluid in an Asymmetric Channel

  • Khan, Ambreen A.;Muhammad, Saima;Ellahi, R.;Zia, Q.M. Zaigham
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.273-280
    • /
    • 2016
  • In this paper, the peristaltic flow of Psedoplastic fluid with variable viscosity in an asymmetric channel is examined. The bionic effects by means of magnetohydrodynamics (MHD) are taken into account. The assumptions of long wave length and low Reynolds number are taken into account. The basic equations governing the flow are first reduced to a set of ordinary differential equation by using appropriate transformation for variables and then solve by using perturbation method. The effect of physical parameters on the pressure rise, velocity and pressure gradient are illustrated graphically. The trapping phenomenon is analyzed through stream lines. A suitable comparison has also been made as a limiting case of the considered problem.

Numerical Study of the Magnetohydrodynamic Heat Transfer Peristaltic Flow in Tube Against High Reynolds Number

  • Hamid, A.H.;Javed, Tariq;Ali, N.
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1295-1302
    • /
    • 2018
  • In the present investigation, we have studied the magnetohydrodynamic (MHD) heat transfer of peristaltic flow in a tube. The analysis is made without imposing any assumption to obtain the streamline and isothermal line directly. Galerkin's finite element method has been used on the governing Navier-Stoke's equation in the form of ${\psi}-{\omega}$. The graphs of the computed longitudinal velocity, temperature and pressure are plotted against different value of the emerging parameter by using the stream function and vorticity. The results are valid beyond the long wavelength and the low Reynolds number limits. We conclude that higher values of the parameters are not independent of the time mean flow rate.

Disinfection of harmful organism for ballast water using electrolytic treatment system (전해처리를 통한 밸러스트수의 유해생물 살균처리)

  • 박상호;김인수
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • /
    • pp.227-232
    • /
    • 2004
  • Ballast water from ship harmful microorganism sterilized use of electrolytic sterilization system. The experimental methods were use of peristaltic flow pump upward on electrode pole. Due to reaction time, HRT were unlike microorganism on flow rate. In electrolysis, dioxide iridium coated titanium(Ti/IrO$_2$) and stainless steel plate were used for anode and cathode respectively. Current density controls make use of D.C Power supply on 250V 100Amper. Experimental use of current density between 0.1 and 0.5A was able to disinfect microorganism at 5 seconds by the reaction time. This study shows that the electrolyzed water has a potential for the sterilization of ballast water.

  • PDF

Disinfection of harmful organisms for sea water using electrolytic treatment system (전해처리를 통한 해수의 유해생물 살균처리)

  • Park Sang-Ho;Kim In-Soo
    • Journal of Navigation and Port Research
    • /
    • v.28 no.10
    • /
    • pp.955-960
    • /
    • 2004
  • The treated ballast water from previous treatment contains microorganisms and pathogenic organisms in an electrolytic treatment system. The experimental methods included using a peristaltic flow pump placed upward on an electrode pole. Due to the reaction time, the hydraulic retention time indicated unlike microorganisms on the flow rate. In electrolysis, dioxide iridium-coated titanium (Ti/Ir02) and stainless steel plates were used for the anode and cathode, respectively. Current density controls make use of a DC power supply on 250V, 100Amper. Experimental use of a current density between 0.1 and 1.0A/dm2 was able to disinfect the microorganism (E. coli, Bacteria, Bacillus sp.) in seawater for 5 seconds of reaction time. The removal rate was approximately $90\%,$ while the current density was 2.0A/dm2 and the electrode distance was 75mm. This study shows that the electrolytic treatment system has a potential for the sterilization of ballast water.