• Title/Summary/Keyword: Peristaltic Pump

Search Result 54, Processing Time 0.033 seconds

Design and Prototyping of a Novel Type Piezoelectric Micro-pump

  • Oh, Jin-Heon;Lim, Jong-Nam;Lee, Seung-Su;Heo, Jun;Lim, Kee-Joe
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.5
    • /
    • pp.181-185
    • /
    • 2008
  • Using the extensional vibration mode of PZT ring, a piezopump is successfully made. The PZT ring is polarized with thickness direction. The traveling extensional wave along the circumference of the ring is obtained by dividing two standing waves which are temporally and spatially phase shifted by 90 degrees from each other. The proposed piezopump is consisted of coaxial cylindrical shells that are bonded piezoelectric ceramic ring. The pump takes an unobtrusive operation into the simple displacing mechanism using peristaltic traveling waves without the physical moving parts. The finite elements analysis on the proposed pump model is carried out to verify its operation principle and design by the commercial FEM software. Components of piezopump were made, assembled, and tested to validate the concepts of the proposed pump and confirm the simulation results. The performance of the proposed piezopump is about 580 ${\mu}l/min$ in flow rate with the highest pressure level of 0.85 kPa, when the driving voltage is 150 $V_p$, 57 kHz.

Design of valveless type peristaltic micro-pump (밸브레스 연동(連動) 압전펌프의 설계 및 특성)

  • Oh, Jin-Heon;Jeong, Eui-Hwan;Lim, Jong-Nam;Lim, Kee-Joe;Song, Jae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1301_1302
    • /
    • 2009
  • Recently, there has been increased incessantly an interest in research area on micro-fluidic pump for electronic and biological applications. The proposed pump takes an unobtrusive operation into the simple displacing mechanism using peristaltic traveling waves without the physical moving valves. And, this piezopump makes up a panel type design. The ATILA simulation was performed to estimate the operating frequency of the vibrating wave mode, to optimize the design conditions of piezopump such as structure, elastic body material, piezoelectric ceramics, and to analyze the distribution of vibration displacement. The best measured value of the pumping rate is about $118{\mu}l$/min under the following parameters : 4-wave mode, 50kHz operating frequency, $200V_p$.

  • PDF

Fabrication and Drive Test of a Peristaltic Thermopnumatic PDMS Micropump

  • Jeong Ok Chan;Park Sin Wook;Yang Sang Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.649-654
    • /
    • 2005
  • This paper presents fabrication and drive test of a peristaltic PDMS micropump actuated by the thermopneumatic force. The micropump consists of the three peristaltic-type actuator chambers with microheaters on the glass substrate and a microchannel connecting the chambers and the inlet/outlet port. The micropump is fabricated by the spin-coating process, the two-step curing process, the JSR (negative PR) molding process, and etc. The diameter and the thickness of the actuator diaphragm are 2.5 mm and $30{\mu}m$, respectively. The meniscus motion in the capillary tube is observed with a video camera and the flow rate of the micro pump is calculated through the frame analysis of the recorded video data. The maximum flow rate of the micropump is about $0.36\;{\mu}L/sec$ at 2 Hz for the zero hydraulic pressure difference when the 3-phase input voltage is 20 V.

Improvement of Measurement Precisions for Uranium Isotopes at Ultra Trace Levels by Modification of the Sample Introduction System in MC-ICP-MS

  • Park, Ranhee;Lim, Sang Ho;Han, Sun-Ho;Lee, Min Young;Park, Jinkyu;Lee, Chi-Gyu;Song, Kyuseok
    • Mass Spectrometry Letters
    • /
    • v.7 no.2
    • /
    • pp.50-54
    • /
    • 2016
  • Multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) is currently used in our laboratory for isotopic and quantitative analyses of nuclear materials at ultra-trace levels in environmental swipe samples, which is a very useful for monitoring undeclared nuclear activities. In this study, to improve measurement precisions of uranium isotopes at ultratrace levels, we adopted a desolvating nebulizer system (Aridus-II, CETAC., USA), which can improve signal sensitivity and reduce formation of uranium hydride. A peristaltic pump was combined with Aridus-II in the sample introduction system of MC-ICP-MS to reduce long-term signal fluctuations by maintaining a constant flow rate of the sample solution. The signal sensitivity in the presence of Aridus-II was improved more than 10-fold and the formation ratio of UH/U decreased by 16- to 17- fold compared to a normal spray chamber. Long-term signal fluctuations were significantly reduced by using the peristaltic pump. Detailed optimizations and evaluations with uranium standards are also discussed in this paper.

An Experimental Study for Manufacturing MPCM Slurry and Its Application to a Cooling System (미립캡슐잠열재 제조 및 축열식 냉방기 적용실험)

  • 이효진;최준규;이재구
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.5
    • /
    • pp.352-359
    • /
    • 2003
  • The present study has been conducted for manufacturing MPCM (microencapsulated phase change material) slurry with in-situ polymerization and proving their applicabilities for tooling system. The surface of MPCM is composed of melamine, while tetradecane, paraffin wax, is centered in the MPCM. The produced capsules are observed by the optical microscope and SEM for superficial shapes. Their thermal properties are measured by DSC. Their size distributions are observed by FA particle analyzer. A narrow size distribution from 1 to 10 ${\mu}{\textrm}{m}$ with 5 ${\mu}{\textrm}{m}$ of average diameter was observed. Melting temperature was 6.7$^{\circ}C$. The durability of MPCM was tested with various types of pump such as centrifugal, peristaltic, and mono pumps. During 10000 cycles the fraction of broken capsules was smaller than 6% for the centrifugal and peristaltic pumps, while bigger value of 8% for the mono pump. A cooling system, which adopted MPCM slurry as a media for transporting cold thermal energy, was designed to investigate the performance of the MPCM. The discharging times of 10 and 20 wt% MPCM slurry were lasted up to 105 and 285 minutes longer, respectively, than the water cooling system.

Performance Improvement of Peristaltic Micropump Using Various Actuating Signal (다양한 동작신호의 사용에 따른 연동형 마이크로 펌프의 성능 향상)

  • Hong, Pyo-Hwan;Jung, Dong-Geon;Pyo, Dae-Seong;Lee, Jong-Hyun;Cho, Chan-Seob;Kim, Bonghwan
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.428-432
    • /
    • 2013
  • This paper described the development of electrostatically driven peristaltic micropump. The proposed micropump consists of a flexible membrane and a single chamber which electrodes are inserted. The single chamber is divided into smaller cells by the electrodes. The fabricated micropump was operated with four electrodes in the membrane and a various phase sequencing actuation. We studied the changes in the flow rate corresponding to the actuating signal applied to the micropump under the zero hydraulic pressure difference between lnlet port and outlet port. The pump was operated from 60 to 130 V. Whereas the maximum flow rate in basic actuating signal is about 83 ${\mu}1/min$ at 15 Hz, the maximum flow rate in optimized actuating signal is about 114 ${\mu}l/min$ at 10 Hz.

A magnetic liquid based microscale peristaltic pump (자성유체를 기반으로 한 마이크로 스케일의 연동형 펌프)

  • Kim, Han-Sang;Sung, Tan-Il;Choi, Hong-Soon;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1011-1012
    • /
    • 2011
  • 본 연구에서는 자성유체를 기반으로 마이크로 스케일 유체를 이동시키기 위한 pump를 모델링하고 실험을 통해 동작을 확인한다. 탄성체와 자성유체로 구성된 횡경막이 연속적으로 움직이는 형태의 액츄에이터는 pump와 같은 움직임을 일으키는데, 이 때 움직이는 유체의 양은 매우 극소량으로 제어 가능하며, 액적의 이동속도는 자성유체를 통한 횡경막의 반복적인 움직임의 속도에 의해 결정된다. 자력에 의한 횡경막의 변위에 따른 액적의 양을 유추하고 고안된 마이크로 스케일의 pump의 예측된 움직임을 실제 제작하여 비교 관찰하고자 한다.

  • PDF

Development of the Pulsatile Pump System for a Perfusion Bioreactor (관류형 바이오리액터를 위한 박동 펌프 시스템 개발)

  • Kim, Hak-Jun;Kim, Sun-Hong;Chung, Ho-Yun;Yun, Won-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.526-533
    • /
    • 2011
  • This research is about the pulsatile pump system utilized in the perfusion bioreactor for the in vitro human tissue culture. A pulsatile pump system which can be applied to the culture of the vascular tissues including blood vessel is developed by using the idea of human heart's blood pumping into organs as followings: culture chamber, a pressurizing device which generates laminar pulsatile flow by controlling the x-sectional area of the culture media delivering tubing, a compliance chamber which supplies the pressuring device with a constant pressure, and a peristaltic pump which circulates the culture media in a circuit ranging from the culture chamber to the compliance chamber. The developed pulsatile pump system shows that a physiology of the human heart's blood pumping including pulsatile pressure waveform of systolic-diastolic pressure is well represented. Not only time domain but also frequency domain characteristics of pulsatile pump system which are necessary for the vascular tissue culture such as pulsatile pressure waveform's shape, the frequency, and the magnitude can be easily generated and manipulated by using the proposed system.

Vibration analysis of characteristics and valveless Type Piezoelectric micro-pump (VALVELSS 압전펌프 진동 해석 및 특성)

  • Lim, Jong-Nam;Oh, Jin-Heon;Lim, Kee-Joe;Kim, Hyun-Hoo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.185-185
    • /
    • 2009
  • Micropump is very useful component in micro/nano fluidics and bioMEMS applications. Using the flexural vibration mode of PZT bar, a piezopump is successfully made. The PZT bar is polarized with thickness direction. The proposed structure for the piezo-pump consists of an input and an output port, piezoelectric ceramic actuator, actuator support, diaphragm. The traveling flexural wave along the bar is obtained by dividing two standing waves which are temporally and spatially phase shifted by 90 degrees from each other. Fluid is drawn into a forming chamber, eventually the forming chamber closes trapping the fluid therein. The finite elements analysis on the proposed pump model is carried out to verify its operation principle and design by the commercial FEM software. Components of piezopump were made, assembled, and tested to validate the concepts of the proposed pump and confirm the simulation results. The performance of the proposed piezopump the highest pressure level of 83.4kHz.

  • PDF

A Study on the Development of a Infusion Pump based on an Active Muscle Pump (능동형 근육펌프 구조의 수액 주입 펌프 개발에 관한 연구)

  • Lee, Jeong-Whan;Lee, Sang-Yeob;Lee, Jung-Eun;Ahn, Ihn-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.443-449
    • /
    • 2022
  • In this study, in order to improve the disadvantages of the environmental error of the infusion set that performs infusion therapy in the existing clinical practice and to maximize the user's convenience by miniaturizing the existing infusion pump system, the structure of the muscle pump of the human vein was imitated. As a double check valve method, a method for preventing the backflow of fluid and discharging a constant fluid in one direction by external pressure was proposed. The proposed bio-mimic muscle pump uses a check valve that controls the flow of fluid in one direction and a silicone tube with elasticity, and a chamber is constructed. A peristaltic pump for applying intermittent pressure to the tube chamber was constructed using a multi-cam structure roller. In order to verify the performance of the proposed pump, optimization was performed while changing the number of multi-cam rollers and adjusting the speed of the roller driving motor, and the reproducibility of the instantaneous discharge amount and the continuous discharge amount of the pump was compared and tested. The performance of the muscle pump proposed in this study was verified through experiments that it can inject up to 1L of fluid within 12 hours, and that it is possible to inject the fluid with an accuracy of ±0.1ml. Real-time monitoring of the fluid injection volume through the bio-mimic muscle pump proposed in this study not only increases the convenience of the administrator, but also provides a precise fluid administration environment to more patients at a low cost, and additionally applies bubble detection and occlusion detection technology If so, it is believed that a safer medical environment can be provided to patients.