• Title/Summary/Keyword: Peripheral nervous system

Search Result 231, Processing Time 0.029 seconds

A case of Diabetic Neuropathy Treatment (당뇨병성(糖尿病性) 신경병증(神經病症) 1례(例)에 대한 임상적(臨床的) 고찰(考察))

  • Park, Ji-Hyeon;Hwang, Hui-Jeong;Kim, Jong-Dae;Kang, Seog-Bong
    • Herbal Formula Science
    • /
    • v.9 no.1
    • /
    • pp.387-395
    • /
    • 2001
  • Diabetic neuropathy may affect every part of the nervous system with the possible exception of the brain. While it is rarely a direct cause of death, it is a major cause of morbidity. Distinct syndromes can be recognized, and several different types of neuropathy may be present in the same patient. The most common picture is that of peripheral polyneuropathy. Usually bilateral, the symptoms include numbness, paresthesias, severe hyperesthesias and pain. The pain, which may be deep-seated and severe, is often worse at night. In this case, chief complaints were numbness and paresthesia of lower extremities and the symptoms were improved through Oriental medical treatment.

  • PDF

Acute Phase Protein Lipocalin-2 Is Associated with Formalin-induced Nociception and Pathological Pain

  • Jha, Mithilesh Kumar;Jeon, Sangmin;Jin, Myungwon;Lee, Won-Ha;Suk, Kyoungho
    • IMMUNE NETWORK
    • /
    • v.13 no.6
    • /
    • pp.289-294
    • /
    • 2013
  • Lipocalin-2 (LCN2) is an acute-phase protein induced by injury, infection, or other inflammatory stimuli. LCN2 binds small hydrophobic ligands and interacts with cell surface receptor to regulate diverse cellular processes. The role of LCN2 as a chemokine inducer in the central nervous system (CNS) has been previously reported. Based on the previous participation of LCN2 in neuroinflammation, we investigated the role of LCN2 in formalin-induced nociception and pathological pain. Formalin-induced nociceptive behaviors (licking/biting) and spinal microglial activation were significantly reduced in the second or late phase of the formalin test in Lcn2 knockout mice. Likewise, antibody-mediated neutralization of spinal LCN2 attenuated the mechanical hypersensitivity induced by peripheral nerve injury in mice. Taken together, our results suggest that LCN2 can be therapeutically targeted, presumably for both prevention and reversal of acute inflammatory pain as well as pathological pain.

Neurogenesis in the Adult Brain (성체 뇌 조직의 신경발생)

  • Kim, Sik-Hyun;Kim, Sang-Su
    • PNF and Movement
    • /
    • v.6 no.3
    • /
    • pp.37-51
    • /
    • 2008
  • Purpose : This paper focuses on the emerging concept that adult central nervous system neurogenesis can be regulated by various physical activity, enriched environment, and pathological conditions. Neurogenesis-the production of new neuron-is an ongoing process that persists in the adult brain of mammalian, including humans. Result : The adult brain was thought be limited in its regenerative function. However, this concepts changed, recent evidence of neurogenesis in certain adult brain areas such as SVZ(subventricular zone) and SGZ(subgranular zone) in hippocampus, raised possibility for improved treatment for patient with stroke. Neural plasticity has an adaptive purpose, because an ability of the brain to change in response to peripheral stimulation, physical activity, experience, and injury. Conclusions : The major function of the neurogenesis in adult brain seems to be replacing the neuron that die regularly in discrete adult brain regions. These cells are capable of functionally integrating into neighboring neural cells, and reconnecting to the correct neural networks. This review suggest that various intervention, including physical activity, voluntary movement training, skilled forelimb reaching training, and enriched environment, induced neural cell production in certain adult brain, and associated with functional recovery after stroke.

  • PDF

Effect of Intrahypothalamically Injected Tetrodotoxin on Pressor Responses to Electrical Stimulation in tao Hypothalamus (시상하부내로 투여한 Tetrodotoxin이 혈압 및 시상하부의 전기자극에 의한 승압반응에 미치는 영향)

  • Kim, Jong-Shik;Shin, Hong-Kee;Kim, Kee-Soon
    • The Korean Journal of Physiology
    • /
    • v.11 no.2
    • /
    • pp.23-31
    • /
    • 1977
  • It is Proposed in the Present study to investigate the effects of TTX intravenously or intrahypothalamically administered on the arterial blood pressure and respiration and also to explorc effect of intrahypothalamically administered TTX on the pressor responses to electrical stimulation in the hypothalamus. The results obtained are as follows; 1) The pressor responses to electrical stimulation in the hypothalamus were markedly reduced after administration of TTX. In the $0.01\;{\mu}g/kg$ of TTX administered group, the pressor responses were almost abolished in 6 minutes and there was no tendency toward recovery throughout the experiment. 2) In $0.01\;{\mu}g/kg$ of TTX administered group, the mean arterial blood pressure and heart rate-were gradually reduced while there was a transient increase in respiratory rate followed by slow recovery thereafter. On the other hand no changes in arterial blood pressure, heart rate an4 respiration were observed in $0.005\;{\mu}g/kg$ TTX administered group. 3) Following intravenous administration of $1\;{\mu}g/kg$ TTX, the arterial blood pressure and heart rate were slowly reduced by 60 minutes while no marked changes were found in respiration. From the results of present study it is strongly suggested that TTX exerts its depressant effect not only on peripheral nerves but also on central nervous system.

  • PDF

A Concept Analysis of Fear of Dementia (치매두려움에 대한 개념분석)

  • Lee, Minkyung;Jung, Dukyoo
    • Research in Community and Public Health Nursing
    • /
    • v.29 no.2
    • /
    • pp.206-219
    • /
    • 2018
  • Purpose: This study tries to identify and clarify the concept of fear of dementia. Methods: The hybrid model method was used to perform a conceptual analysis of fear for dementia. Results from both the theoretical review of 35 studies and the field study with 8 community-dwelling older adults were included in the final stage. Results: Fear for dementia had 4 dimensions with 14 attributes including cognitive factors (direct experience of precursor symptoms of dementia, indirect experience of dementia, preliminary knowledge of dementia, impossibility of cognitive control, and confidence in dementia), emotional factors (negative feelings and pessimistic thoughts), social factors (social isolation, economic instability, embarrassment), and behavioral factors (existing health problems, making efforts to maintain health, impossibility of body control, peripheral autonomic nervous system response) along with 34 indicators. Conclusion: This study is meaningful because it reveals the attributes of Korean elderly adults' fear for dementia. In addition, the results may serve as a basis for the early assessment and management of fear for dementia.

Seasonal acclimation in sudomotor function evaluated by QSART in healthy humans

  • Shin, Young Oh;Lee, Jeong-Beom;Kim, Jeong-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.5
    • /
    • pp.499-505
    • /
    • 2016
  • The quantitative sudomotor axon reflex testing (QSART) is a classic test of routine postganglionic sudomotor function. We investigated sudomotor function by QSART after summer (July 2012) and winter (January 2013) seasonal acclimation (SA) in the Republic of Korea. QSART with acetylcholine (ACh) iontophoresis were performed to determine directly activated (DIR) and axon reflex-mediated (AXR1, 2) sweating rate. Onset time of axon reflex, activated sweat gland density (ASGD), activated sweat gland output (ASGO), tympanic and skin temperatures ($T_{ty}$, $T_{sk}$), basal metabolic rate (BMR), and evaporative loss volume changes were measured. Tympanic and mean body temperature (${\bar{T}}_b$; calculated from $T_{ty}$, $T_{sk}$) were significantly lower after summer-SA than that of winter-SA. Sweat onset time was delayed during winter-SA compared to that after summer-SA. BMR, AXR(1), AXR(2), and DIR sweat rates, ASGD and ASGO, and evaporative loss volume were significantly diminished after winter-SA relative to after summer-SA. In conclusion, changes in sweating activity measured by QSART confirmed the involvement of the peripheral nervous system in variation of sudomotor activity in seasonal acclimation.

Basic concepts of needle electromyography

  • Kim, Jee-Eun;Seok, Jin Myoung;Ahn, Suk-Won;Yoon, Byung-Nam;Lim, Young-Min;Kim, Kwang-Kuk;Kwon, Ki-Han;Park, Kee Duk;Suh, Bum Chun;Korean Society of Clinical Neurophysiology Education Committee
    • Annals of Clinical Neurophysiology
    • /
    • v.21 no.1
    • /
    • pp.7-15
    • /
    • 2019
  • Clinical evaluations, nerve conduction studies, and electromyography play major complementary roles in electrophysiologic diagnoses. Electromyography can be used to assess pathologic changes and localize lesions occurring in locations ranging from motor units to anterior-horn cells. Successfully performing electromyography requires knowledge of the anatomy, physiology, and pathology of the peripheral nervous system as well as sufficient skill and interpretation ability. Electromyography techniques include acquiring data from visual/auditory signals and performing needle positioning, semiquantitation, and interpretation. Here we introduce the basic concepts of electromyography to guide clinicians in performing electromyography appropriately.

Anti-inflammatory Effects of Neuregulin-1 via the Downregulation of IL-6, IL-8, and MCP-1 Secretion

  • Lee, Ji-Sook
    • Biomedical Science Letters
    • /
    • v.28 no.3
    • /
    • pp.192-194
    • /
    • 2022
  • The trophic factor Neuregulin-1 (NRG-1) plays a critical role in the development of the peripheral nervous system and the repair of nerve injuries. The regulation of neutrophil apoptosis by cytokine secretion from structural cells is an important process in inflammatory diseases, including asthma. This study aimed to investigate the relationship between NRG-1 and the alteration of neutrophil apoptosis by the regulation of cytokine release in the human lung epithelial BEAS-2B cells. Tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) induce the increase in the release of interleukin (IL)-6, IL-8, and monocyte chemoattractant protein-1 (MCP-1). NRG-1 alone had no effect on the secretion of IL-6, IL-8, and MCP-1. However, co-treatment of TNF-α and IFN-γ with NRG-1 inhibited the secretion of IL-6, IL-8, and MCP-1 that had been increased by TNF-α and IFN-γ. Treatment with NRG-1 did not have a direct effect on neutrophil apoptosis. Co-treatment of TNF-α and IFN-γ with NRG-1 was not effective on suppression of neutrophil apoptosis due to TNF-α and IFN-γ. The supernatant of BEAS-2B cells after co-treatment of TNF-α and IFN-γ with NRG-1 suppressed the inhibition of neutrophil apoptosis that had been caused due to the supernatant treated with TNF-α and IFN-γ. Taken together, NRG-1 has an anti-inflammatory effect in an inflammatory milieu by the regulation of cytokine secretion and neutrophil apoptosis.

Automated detection of panic disorder based on multimodal physiological signals using machine learning

  • Eun Hye Jang;Kwan Woo Choi;Ah Young Kim;Han Young Yu;Hong Jin Jeon;Sangwon Byun
    • ETRI Journal
    • /
    • v.45 no.1
    • /
    • pp.105-118
    • /
    • 2023
  • We tested the feasibility of automated discrimination of patients with panic disorder (PD) from healthy controls (HCs) based on multimodal physiological responses using machine learning. Electrocardiogram (ECG), electrodermal activity (EDA), respiration (RESP), and peripheral temperature (PT) of the participants were measured during three experimental phases: rest, stress, and recovery. Eleven physiological features were extracted from each phase and used as input data. Logistic regression (LoR), k-nearest neighbor (KNN), support vector machine (SVM), random forest (RF), and multilayer perceptron (MLP) algorithms were implemented with nested cross-validation. Linear regression analysis showed that ECG and PT features obtained in the stress and recovery phases were significant predictors of PD. We achieved the highest accuracy (75.61%) with MLP using all 33 features. With the exception of MLP, applying the significant predictors led to a higher accuracy than using 24 ECG features. These results suggest that combining multimodal physiological signals measured during various states of autonomic arousal has the potential to differentiate patients with PD from HCs.

Dysfunction of Autonomic Nervous System in Patients with Chronic Obstructive Pulmonary Diseases (만성 폐쇄성 폐질환 환자의 자율신경 장애)

  • Shin, Kyeong-Cheol;Lee, Kwan-Ho;Park, Hye-Jung;Shin, Chang-Jin;Lee, Choong-Ki;Chung, Jin-Hong;Lee, Hyun-Woo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.46 no.3
    • /
    • pp.317-326
    • /
    • 1999
  • Background: Neural control of airway function is through parasympathetic, sympathetic and non-adrenergic, non-cholinergic mechanisms. The autonomic nervous system controls the airway smooth muscle tone, mucociliary system, permeability and blood flow in the bronchial circulation and release of mediators from the mast cells and other inflammatory cells. The cardiovascular and respiratory autonomic efferent fibers have a common central origin, so altered cardiovascular autonomic reflexes could reflect the altered respiratory autonomic status. Therefore, we performed this study to assess the autonomic abnormality and determine the correlating factors of severity of autonomic neuropathy in patients with chronic obstructive pulmonary disease(COPD) using easily reproducible cardiovascular autonomic reflex function test. Method: The study included 20 patients with COPD and 20 healthy persons obtained on Health Promotion Center in Yeungnam university hospital. All the patients had history and clinical features of COPD as defined by the American Thoracic Society. Any patients with myocardial ischemia, cardiac arrythmia, hypertension, central or peripheral nervous system disease, diabetes mellitus, or any other diseases known to produce autonomic neuropathy, has excluded. The autonomic nervous system function tests included three tests evaluating the parasympathetic system and two tests evaluating the sympathetic system. And also all subjects were subjected to pulmonary function test and arterial blood gas analysis. Results: Autonomic dysfunction was more commonly associated with patients with COPD than healthy person The parasympathetic dysfunction was frequent in patient with COPD, but sympathetic dysfunction seemed preserved. The severity of parasympathetic dysfunction in patients with COPD was correlated with the degree of duration of disease, smoking, reductions in the value of $FEV_1$ and FVC, and arterial hypoxemia but no such correlation existed for age, type of COPD, $FEV_1$/FVC, or $PaCO_s$. Conclusion: There is high frequency of parasympathetic dysfunction associated with COPD and the parasympathetic abnormality in COPD is increased in proportion to severity of airway disease. In COPD, parasympathetic dysfunction probably does not the cause of disease, but it may be an effect of disease progression.

  • PDF