• Title/Summary/Keyword: Periodic response

Search Result 280, Processing Time 0.021 seconds

Analysis of a network for control systems in nuclear power plants and a case study (원자력 발전소 제어계통을 위한 네트워크의 해석과 사례 연구)

  • Lee, Sung-Woo;Yim, Han-Suck
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.6
    • /
    • pp.734-743
    • /
    • 1999
  • In this paper, a real-time communication method using a PICNET-NP(Plant instrumentation and Control Network for Nuclear Power plant) is proposed with an analysis of the control network requirements of DCS(Distributed Control System) in nuclear power plants. The method satisfies deadline in case of worst data traffics by considering aperiodic and periodic real-time data and others. In addition, the method was used to analyze the data characteristics of the DCS in existing nuclear power plant. The result shows that use of this method meets the response time requirement(100ms).

  • PDF

Examination on Shock Vibration of Feed-Water Recirculation piping in Power Site (발전소 대형 수배관계의 충격성 이상 과도진동의 특성 고찰 사례)

  • Kim, Yeon-Whan;Yang, Gyeong-Hyeon;Bae, Si-Yeon;Yu, Jae-Myeong;Jo, Jong-Hyeon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.475-479
    • /
    • 2011
  • Leak problem with large pressure drop occurrs non-periodic shock pulsation due to the deterioration of a isolation valve in feed-water recirculation piping system. This paper discusses on the shock vibration and noise occurred due to the effect of acoustical shock pulsations by degradation of the isolation valve in a power site.

  • PDF

Periodic seismic performance evaluation of highway bridges using structural health monitoring system

  • Yi, Jin-Hak;Kim, Dookie;Feng, Maria Q.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.5
    • /
    • pp.527-544
    • /
    • 2009
  • In this study, the periodic seismic performance evaluation scheme is proposed using a structural health monitoring system in terms of seismic fragility. An instrumented highway bridge is used to demonstrate the evaluation procedure involving (1) measuring ambient vibration of a bridge under general vehicle loadings, (2) identifying modal parameters from the measured acceleration data by applying output-only modal identification method, (3) updating a preliminary finite element model (obtained from structural design drawings) with the identified modal parameters using real-coded genetic algorithm, (4) analyzing nonlinear response time histories of the structure under earthquake excitations, and finally (5) developing fragility curves represented by a log-normal distribution function using maximum likelihood estimation. It is found that the seismic fragility of a highway bridge can be updated using extracted modal parameters and can also be monitored further by utilizing the instrumented structural health monitoring system.

Unsteady Pressure Distributions in a Channel Diffuser of Centrifugal Compressor (원심압축기 채널디퓨저 내부의 비정상 압력분포)

  • Kang, Jeong-Seek;Cho, Sung-Kook;Kang, Shin-Hyoung
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.69-77
    • /
    • 1999
  • The aim of this paper is to understand the unsteady flow phenomena in a high speed centrifugal compressor channel diffuser. Instantaneous pressures are measured at six locations in the diffuser using fast-response pressure transducers. Instantaneous pressure ratio decomposition was applied to analyze the pressure signal. In vaneless space where impeller-vaned diffuser interaction is strong, aperiodic unsteadiness is high and periodic pressure waveforms by blade passing are not clear at low flow rates, especially near vane suction side. High aperiodic unsteadiness decreases downstream of diffuser. The blade-to-blade pressure wave does not disappear in surge flow condition. In surge there exist not only large scale periodic surge wave but also blade-to-blade pressure wave.

  • PDF

Automated inventory and material science scoping calculations under fission and fusion conditions

  • Gilbert, Mark R.;Fleming, Michael;Sublet, Jean-Christophe
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1346-1353
    • /
    • 2017
  • The FISPACT-II inventory simulation platform is a modern computational tool with advanced and unique capabilities. It is sufficiently flexible and efficient to make it an ideal basis around which to perform extensive simulation studies to scope a variety of responses of many materials (elements) to several different neutron irradiation scenarios. This paper briefly presents the typical outputs from these scoping studies, which have been used to compile a suite of nuclear physics materials handbooks, providing a useful and vital resource for material selection and design studies. Several different global responses are extracted from these reports, allowing for comparisons between materials and between different irradiation conditions. A new graphical output format has been developed for the FISPACT-II platform to display these "global summaries"; results for different elements are shown in a periodic table layout, allowing side-by-side comparisons. Several examples of such plots are presented and discussed.

Adaptive inverse feedback control of periodic noise for systems with nonminimum phase cancellation path (비최소위상 상쇄계를 가진 시스템을 위한 주기소음의 적응 역 궤환 제어)

  • Kim, Sun-Min;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.437-442
    • /
    • 2000
  • An alternative inverse feedback structure for adaptive active control of periodic noise is introduced for systems with nonminimum phase cancellation path. To obtain the inverse model of the nonminimum phase cancellation path, the cancellation path model can be factorized into a minimum phase term and a maximum phase term. The maximum phase term containing unstable zeros makes the inverse model unstable. To avoid the instability, we alter the inverse model of the maximum phase system into an anti-causal FIR one. An LMS predictor estimates the future samples of the noise, which are necessary for causality of both anti-causal FIR approximation for the stable inverse of the maximum phase system and time-delay existing in the cancellation path. The proposed method has a faster convergence behavior and a better transient response than the conventional FX-LMS algorithms with the same internal model control structure since a filtered reference signal is not required. We compare the proposed methods with the conventional methods through simulation studies.

  • PDF

System Identification with Completely Unknown Periodic Disturbances in Active Engine Mount Control Application (엔진마운트 능동제어용 시스템인식기술)

  • 이수철
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.4 no.1
    • /
    • pp.58-62
    • /
    • 1999
  • This paper shows that is possible to identify the system's input-output dynamics exactly in the presence of unknown periodic disturbances for the Active Engine Mount Control Application .The disturbance frequencies and waveforms can be completely unknown and arbitrary. Only measurements of a control excitation signal and the disturbance-contaminated response are used for identification. Examples are given to illustrate the method, including the identification and vibration control of active engine mount for automobile.

  • PDF

Response of triceratops to impact forces: numerical investigations

  • Chandrasekaran, Srinivasan;Nagavinothini, R.
    • Ocean Systems Engineering
    • /
    • v.9 no.4
    • /
    • pp.349-368
    • /
    • 2019
  • Triceratops is one of the new generations of offshore compliant platforms suitable for ultra-deepwater applications. Apart from environmental loads, the offshore structures are also susceptible to accidental loads. Due to the increase in the risk of collision between ships and offshore platforms, the accurate prediction of structural response under impact loads becomes necessary. This paper presents the numerical investigations of the impact response of the buoyant leg of triceratops usually designed as an orthogonally stiffened cylindrical shell with stringers and ring frames. The impact analysis of buoyant leg with a rectangularly shaped indenter is carried out using ANSYS explicit analysis solver under different impact load cases. The results show that the shell deformation increases with the increase in impact load, and the ring stiffeners hinder the shell damage from spreading in the longitudinal direction. The response of triceratops is then obtained through hydrodynamic response analysis carried out using ANSYS AQWA. From the results, it is observed that the impact load on single buoyant leg causes periodic vibration in the deck in the surge and pitch degrees of freedom. Since the impact response of the structure is highly affected by the geometric and material properties, numerical studies are also carried out by varying the strain rate, and the location of the indenter and the results are discussed.

Numerical investigation on vortex-induced vibration response characteristics for flexible risers under sheared-oscillatory flows

  • Xue, Hongxiang;Yuan, Yuchao;Tang, Wenyong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.923-938
    • /
    • 2019
  • Surge motion of top-end platform induced by periodic wave makes marine flexible riser encounter equivalent sheared-oscillatory flow, under which the Vortex-induced Vibration (VIV) response will be more complicated than pure sheared flow or oscillatory flow cases. Based on a time domain force-decomposition model, the VIV response characteristics under sheared-oscillatory flows are investigated numerically in this paper. Firstly, the adopted numerical model is validated well against laboratory experiments under sheared flow and oscillatory flow. Then, 20 sheared-oscillatory flow cases with different oscillation periods and top maximum current velocities are designed and simulated. Under long and short oscillation period cases, the structural response presents several similar features owing to the instantaneous sheared flow profile at each moment, but it also has some different patterns because of the differently varying flow field. Finally, the effects and essential mechanism of oscillation period and top maximum current velocity on VIV response are discussed systematically.

Design of Scheduler Considering Real-Time Characteristic and Fault-Tolerant in Embedded System (임베디드 시스템에서 실시간성과 결함허용을 보장하는 스케줄러 설계)

  • Jeon, Tae-Gun;Kim, Chang-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.1
    • /
    • pp.76-84
    • /
    • 2011
  • Embedded Systems need to ensure real-time of the task response time depending on the applied fields of it. And task could be faulty due to various reasons in real time systems. Therefore in this paper, we design a task scheduler that guarantees deadlines of periodic tasks and considers a fault tolerance of defective task in embedded system with a single processor. In order to provide real-time, we classify tasks with periodic/aperiodic tasks and applies RMS(Rate Monotonic Scheduling) method to schedule periodic tasks and can guarantees execution of aperiodic tasks by managing surplus times obtained after analyzing the execution time of periodic tasks. In order to provide fault tolerance, we manage backup times and reexecute a fault task to restore it's conditions.