• 제목/요약/키워드: Periodic State

검색결과 340건 처리시간 0.03초

Periodic Properties of a Lyapunov Functional of State Delay Systems

  • Young Soo Suh
    • KIEE International Transaction on Systems and Control
    • /
    • 제2D권2호
    • /
    • pp.92-96
    • /
    • 2002
  • This paper is concerned with properties of a Lyapunov functional of state delay systems. It is shown that if a state delay system has a pure imaginary pole for some state delay, then no Lyapunov functional satisfying a Lyapunov condition exists periodically with respect to change of the state delay. This periodic property is unique in state delay systems and has been well known in the frequency domain stability conditions. However, in the time domain stability conditions using a Lyapunov functional, the periodic property is not known explicitly.

  • PDF

FEEDBACK CONTROL FOR A TURBIDOSTAT MODEL WITH RATIO-DEPENDENT GROWTH RATE

  • Hu, Xiaoyu;Li, Zuxiong;Xiang, Xingguo
    • Journal of applied mathematics & informatics
    • /
    • 제31권3_4호
    • /
    • pp.385-398
    • /
    • 2013
  • In this paper, a turbidostat model with ratio-dependent growth rate and impulsive state feedback control is considered. We obtain sufficient conditions of the globally asymptotically stable of the system without impulsive state feedback control. We also obtain that the system with impulsive state feedback control has periodic solution of order one. Sufficient conditions for existence and stability of periodic solution of order one are given. In some cases, it is possible that the system exists periodic solution of order two. Our results show that the control measure is effective and reliable.

A Chaos Control Method by DFC Using State Prediction

  • Miyazaki, Michio;Lee, Sang-Gu;Lee, Seong-Hoon;Akizuki, Kageo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제3권1호
    • /
    • pp.1-6
    • /
    • 2003
  • The Delayed Feedback Control method (DFC) proposed by Pyragas applies an input based on the difference between the current state of the system, which is generating chaos orbits, and the $\tau$-time delayed state, and stabilizes the chaos orbit into a target. In DFC, the information about a position in the state space is unnecessary if the period of the unstable periodic orbit to stabilize is known. There exists the fault that DFC cannot stabilize the unstable periodic orbit when a linearlized system around the periodic point has an odd number property. There is the chaos control method using the prediction of the $\tau$-time future state (PDFC) proposed by Ushio et al. as the method to compensate this fault. Then, we propose a method such as improving the fault of the DFC. Namely, we combine DFC and PDFC with parameter W, which indicates the balance of both methods, not to lose each advantage. Therefore, we stabilize the state into the $\tau$ periodic orbit, and ask for the ranges of Wand gain K using Jury' method, and determine the quasi-optimum pair of (W, K) using a genetic algorithm. Finally, we apply the proposed method to a discrete-time chaotic system, and show the efficiency through some examples of numerical experiments.

Kinetics calculation of fast periodic pulsed reactors using MCNP6

  • Zhon, Z.;Gohar, Y.;Talamo, A.;Cao, Y.;Bolshinsky, I.;Pepelyshev, Yu N.;Vinogradov, Alexander
    • Nuclear Engineering and Technology
    • /
    • 제50권7호
    • /
    • pp.1051-1059
    • /
    • 2018
  • Fast periodic pulsed reactor is a type of reactor in which the fission bursts are formed entirely with external reactivity modulation with a specified time periodicity. This type of reactors could generate much larger intensity of neutron beams for experimental use, compared with the steady state reactors. In the design of fast periodic pulsed reactors, the time dependent simulation of the power pulse is majorly based on a point kinetic model, which is known to have limitations. A more accurate calculation method is desired for the design analyses of fast periodic pulsed reactors. Monte Carlo computer code MCNP6 is used for this task due to its three dimensional transport capability with a continuous energy library. Some new routines were added to simulate the rotation of the movable reflector parts in the time dependent calculation. Fast periodic pulsed reactor IBR-2M was utilized to validate the new routines. This reactor is periodically in prompt supercritical state, which lasts for ${\sim}400{\mu}s$, during the equilibrium state. This generates long neutron fission chains, which requires tremendously large amount of computation time during Monte Carlo simulations. Russian Roulette was applied for these very long neutron chains in MCNP6 calculation, combined with other approaches to improve the efficiency of the simulations. In the power pulse of the IBR-2M at equilibrium state, there is some discrepancy between the experimental measurements and the calculated results using the point kinetics model. MCNP6 results matches better the experimental measurements, which shows the merit of using MCNP6 calculation relative to the point kinetics model.

Mechanical behavior of composite gel periodic structures with the pattern transformation

  • Hu, Jianying;He, Yuhao;Lei, Jincheng;Liu, Zishun;Swaddiwudhipong, Somsak
    • Structural Engineering and Mechanics
    • /
    • 제50권5호
    • /
    • pp.605-616
    • /
    • 2014
  • When the periodic cellular structure is loaded or swelling beyond the critical value, the structure may undergo a pattern transformation owing to the local elastic instabilities, thus leading to structural collapse and the structure changing to a new configuration. Based on this deformation-triggered pattern, we have proposed the novel composite gel materials. This designed material is a type of architectural material possessing special mechanical properties. In this study, the mechanical behavior of the composite gel periodic structure with various gel inclusions is studied further through numerical simulations. When pattern transformation occurs, it results in a different elastic relationship compared with the material at untransformed state. Based on the obtained nominal stress versus nominal strain behavior, the Poisson's ratio and corresponding deformed structure patterns, we investigate the performance of designed composite materials and the effects of the uniformly distributed gel inclusions on composite materials. A better understanding of the characteristics of these composite gel materials is a key to develop its potential applications on new soft machines.

주기적 외란의 제거를 위한 빠른 오프라인 학습 제어 (A Fast Off-line Learning Approach to the Rejection of Periodic Disturbances)

  • 장정국;김남국;이호성
    • 정보저장시스템학회논문집
    • /
    • 제3권4호
    • /
    • pp.167-172
    • /
    • 2007
  • The recently-developed off-line learning control approaches for the rejection of periodic disturbances utilize the specific property that the learning system tends to oscillate in steady state. Unfortunately, the prior works have not clarified how closely the learning system should approach the steady state to achieve the rejection of periodic disturbances to satisfactory level. In this paper, we address this issue extensively for the class of linear systems. We also attempt to remove the effect of other aperiodic disturbances on the rejection of the periodic disturbances effectively. In fact, the proposed learning control algorithm can provide very fast convergence performance in the presence of aperiodic disturbance. The effectiveness and practicality of our work is demonstrated through mathematical performance analysis as well as various simulation results.

  • PDF

디스크 드라이브의 주기적 외란 고속 보상 제어 (Fast Compensator of Periodic Disturbance in Disk Drives)

  • 부찬혁;김호찬;강창익
    • 제어로봇시스템학회논문지
    • /
    • 제10권2호
    • /
    • pp.153-163
    • /
    • 2004
  • The control objective in hard disk drives is to move head as fast as possible to target track and position the head over the center of target track in the presence of external disturbances. The external shock or disk clamping error in manufacturing process causes the disk center to deviate from the disk rotation center. The disk shift acts on the control system as disturbance and degrades severely the performance of disk drives. In this paper, we present a new controller that compensates for the periodic disturbances very fast. The disturbance compensator is arranged in parallel with the state feedback controller. To avoid the interference with the state feedback controller, the compensator creates compensation signal without the feedback of system output until steady state. The pulse type controller is included additionally for improving the transient performance due to initial state. Finally, in order to demonstrate the superior performance of the proposed compensator. we present some experimental results using a commercially available disk drive.

QUALITATIVE ANALYSIS OF A GENERAL PERIODIC SYSTEM

  • Xu, Shihe
    • 대한수학회논문집
    • /
    • 제33권3호
    • /
    • pp.1039-1048
    • /
    • 2018
  • In this paper we study the dynamics of a general ${\omega}-periodic$ model. Necessary and sufficient conditions for the global stability of zero steady state of the model are given. The conditions under which there exists a unique periodic solutions to the model are determined. We also show that the unique periodic solution is the global attractor of all other positive solutions. Some applications to mathematical models for cancer and tumor growth are given.

주기적 확률외란을 갖는 DC 전동기의 적응형 상태궤환 제어시스템 (Adaptive State Feedback Control System of DC Motors with Periodic Random Disturbance)

  • 정상철;김준수;조현철;이형기
    • 전기학회논문지
    • /
    • 제57권6호
    • /
    • pp.1036-1041
    • /
    • 2008
  • Periodic disturbance is practically occurred in several engineering applications, especially in data storage systems. However, recently addressed controls for such problem were mostly dealt with its deterministic nature, which is rarely practical in real-time implementation. We present an adaptive control approach for DC motor systems with periodic stochastic disturbance whose frequency and magnitude are both random variables. We establish adaptive state feedback control which is linearly composed of nominal and corrective control parameter matrices. The former is derived from a nominal system model voiding disturbance and the latter is constructed from a disturbed system model by using Lyapunov stability theory. We carry out computer simulation to evaluate the proposed control methodology and compare to the recently addressed control method to demonstrate its superiority.

A State Space Analysis on the Stability of Periodic Orbit Predicted by Harmonic Balance

  • Sung, Sang-Kyung;Lee, Jang-Gyu;Kang, Tae-Sam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.67.5-67
    • /
    • 2001
  • A closed loop system with a linear plant and nonlinearity in the feedback connection is analyzed for its quasi-static orbital stability by a state-space approach. First a periodic orbit is assumed to exist in the loop which is determined by describing function method for the given nonlinearity. This is possible by selecting a proper nonlinearity and a rigorous justification of the describing function method.[1-3, 18, 20]. Then by introducing residual operator, a linear perturbed model can be formulated. Using various transformations like a modified eigenstructure decomposition, periodic-averaging, charge of variables and coordinate transformation, the stability of the periodic orbit, as a solution of harmonic balance, can be shown by investigating a simple scalar function and result of linear algebra. This is ...

  • PDF