• Title/Summary/Keyword: Periodic Flows

Search Result 122, Processing Time 0.028 seconds

Simulated of flow in a three-dimensional porous structure by using the IB-SEM system

  • Wang, Jing;Li, Shucai;Li, Liping;Song, Shuguang;Lin, Peng;Ba, Xingzhi
    • Geomechanics and Engineering
    • /
    • v.18 no.6
    • /
    • pp.651-659
    • /
    • 2019
  • The IB-SEM numerical method combines the spectral/hp element method and the rigid immersed boundary method. This method avoids the problems of low computational efficiency and errors that are caused by the re-division of the grid when the solids move. Based on the Fourier transformation and the 3D immersed boundary method, the 3D IB-SEM system was established. Then, using the open MPI and the Hamilton HPC service, the computational efficiency was increased substantially. The flows around a cylinder and a sphere were simulated by the system. The surface of the cylinder generates vortices with alternating shedding, and these vortices result in a periodic force acting on the surface of the cylinder. When the shedding vortices enter the flow field behind the cylinder, a recirculation zone is formed. Finally, the three-dimensional pore flow was successfully investigated.

Correlation between water temperature and catch at a set net in Yeosu Bay, Korea

  • Choo, Hyosang
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.1
    • /
    • pp.41-52
    • /
    • 2021
  • Data for fish species composition and the catch of fish species were obtained from the daily trading records for the period between April and December 2016 to 2018 at the set net fishing grounds in Yeosu Bay, Korea. The annual mean total catch was 195.8 tons, and the dominant species was the Spanish mackerel (Scomberomorus niphonius), which accounts for about 55 percent of the total catch. The catch increased in spring and autumn. Increase in spring is caused by not Spanish mackerel but other fish while the increase in autumn by Spanish mackerel. The distinct increase of the catch in summer, 2017 was due to the new recruitment of small-sized Spanish mackerel, which was probably to be from the fish population hatched in spring in the East China Sea. Our results showed a strong correlation between water temperature and catch fluctuation. The catch increases with the increase in water temperatures, and the periodic pattern of the water temperature and catch fluctuation is more consistent in the offshore waters, in which warm current flows, than in the coast waters.

Effectiveness of a Wave Resonator under Short-period Waves and Solitary Waves (공진장치를 이용한 단주기파랑과 고립파의 제어)

  • Lee, Kwang Ho;Jeong, Seong Ho;Jeong, Jin Woo;Kim, Do Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1B
    • /
    • pp.89-100
    • /
    • 2010
  • The performance evaluation of a conventional Wave Resonator at the entrance of harbors against solitary wave has been performed using 3D numerical wave flume. A wave resonator has been designed for the attenuation of the transmitted wave energy by trapping the short periodic incident waves only. In this study, however, the controlled performance of the wave resonator by its various widths has been numerically investigated for solitary waves. Source distribution method based on the Green function and the 3D one-field Model for immiscible TWO-Phase flows (TWOPM-3D) using 3D numerical wave flume were used for the short-periodic waves and the solitary waves, respectively, and these models were verified through the comparisons with the previous experimental and numerical results by other researchers. It was confirmed that the wave resonator is effective enough to control the solitary waves as well as the periodic waves when it compares with the case of no resonance system. Further, it was found that there is the optimal width of a wave resonator to attenuate the target solitary waves.

Optimal Design of Batch-Storage Network Including Uncertainty and Waste Treatment Processes (불확실한 공정과 불량품 처리체계를 포함하는 공정-저장조 망 최적설계)

  • Yi, Gyeongbeom;Lee, Euy-Soo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.585-597
    • /
    • 2008
  • The aim of this study was to find an analytic solution to the problem of determining the optimal capacity (lot-size) of a batch-storage network to meet demand for a finished product in a system undergoing random failures of operating time and/or batch material. The superstructure of the plant considered here consists of a network of serially and/or parallel interlinked batch processes and storage units. The production processes transform a set of feedstock materials into another set of products with constant conversion factors. The final product demand flow is susceptible to short-term random variations in the cycle time and batch size as well as long-term variations in the average trend. Some of the production processes have random variations in product quantity. The spoiled materials are treated through regeneration or waste disposal processes. All other processes have random variations only in the cycle time. The objective function of the optimization is minimizing the total cost, which is composed of setup and inventory holding costs as well as the capital costs of constructing processes and storage units. A novel production and inventory analysis, the PSW (Periodic Square Wave) model, provides a judicious graphical method to find the upper and lower bounds of random flows. The advantage of this model is that it provides a set of simple analytic solutions while also maintaining a realistic description of the random material flows between processes and storage units; as a consequence of these analytic solutions, the computation burden is significantly reduced.

Numerical Simulation on Laminar Flow Past a Rotary Oscillating Circular Cylinder (주기 회전하는 원형 실린더 주위 층류 유동장의 수치 시뮬레이션)

  • Park, Jong-Chun;Moon, Jin-Kuk;Chun, Ho-Hwan;Suh, Sung-Bu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.4 s.142
    • /
    • pp.368-378
    • /
    • 2005
  • The effects of rotary oscillation on the unsteady laminar flow past a circular cylinder. are numerically investigated in the present study. The numerical solutions for the 20 Wavier-Stokes equation are obtained using a finite volume method Tn the framework of an overlapping grid system. The vortex formation behind a circular cylinder and the hydrodynamics of wake flows for different rotary oscillation conditions are analyzed from the results of numerical simulation. The lock-on region is defined as the region that the natural shedding frequency due to the Karmann Vortex shedding and the forcing frequency due to the forced oscillating a cylinder are nearly same, and the quasi-periodic states are observed around that region. At the intersection between lock-on and non-lock-on region the shedding frequency is bifurcated. After the bifurcation, one frequency fellows the forcing frequency($S_f$) and the other returns to the natural shedding frequency($St_0$). in the quasi-periodic states, the variation of magnitudes and relevant phase changes of $C_L$ with forcing phase are examined.

A Study on the hydrological generation of streamflow - A study on the Range determination of reservoir - (하천유량의 수문학적 모의기술에 관한 연구(I) - 저수지의 Range 결정에 관한 연구)

  • Choe, Han-Gyu;Choe, Yeong-Park;Kim, Chi-Hong
    • Water for future
    • /
    • v.15 no.2
    • /
    • pp.33-39
    • /
    • 1982
  • For the determination of a reservoir capacity Rippl's mass-curve method has long been used with the past river flow data assuming the same flow records will be repeated in the future. In this study the synthetic generation methods of thomas-Fiering type and harmonic analysis were used to synthetically generate 50 years of monthly river inflows to three single-purpose reservoris(Chuncheon, Chungpyong, Hwacheon) and three multi-purpose reservoirs(Soyany, Andon, Daichung). The generated sequences of monthly flows were analyzed based on the range concept, and hence the so-determined ranges for single-prupose and multi-purpose rewervoirs were correlated with the number of monthly flow subseries, resulting an empirical equation of the Feller's type. (1) Single-purpose reservoir $$R_n=2.8357 I\sqrt{n}$$ (2) Multi-purpose reservoir $$R_n=2.5145 I\sqrt{n}$$ where, $R_n$:Range(㎥/S-M) n:periodic(12 months, ……120 months) I:Input mean(㎥/S-M) In Korea, the monthly inflow data generation will be fit to the Thomas-Fiering type, and this paper shows that the periodic range is easily calculated without the Rippl's mass-curve method as shown above formula.

  • PDF

Optimal Design of Batch-Storage Network with Finite Intermediate Storage (저장조 용량제약이 있는 회분식 공정-저장조 그물망 구조의 최적설계)

  • Kim, Hyung-Min;Kim, Kyoo-Nyun;Lee, Gyeong-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.10
    • /
    • pp.867-873
    • /
    • 2001
  • The purpose of this study is to find analytic solution of determining the optimal capacity (lot-size) of multiproduct acyclic multistage production and inventory system to meet the finished product demand under the constraint of finite intermediate storage. Intermediate storage is a practical way to mitigate the material flow imbalance through the line of supply and demand chain. However, the cost of constructing and operating storage facilities is becoming substantial because of increasing land value, environmental and safety concern. Therefore, reasonable decision-making about the capacity of processes and storage units is an important subject for industries. The industrial solution for this subject is to use the classical economic lot sizing method, EOQ/EPQ(Economic Order Quantity/Economic Production Quantity) model, incorporated with practical experience. But EOQ/EPQ model is not suitable for the chemical plant design with highly interlinked processes and storage units because it is developed based on single product and single stage. This study overcomes the limitation of the classical lot sizing method. The superstructure of the plant consists of the network of serially and/or parallelly interlinked non-continuous processes and storage units. The processes transform a set of feedstock materials into another set of products with constant conversion factors. A novel production and inventory analysis method, PSW(Periodic Square Wave) model, is applied to describe the detail material flows among equipments. The objective function of this study is minimizing the total cost composed of setup and inventory holding cost. The advantage of PSW model comes from the fact that the model provides a set of simple analytic solutions in spite of realistic description of the material flows between processes and storage units. the resulting simple analytic solution can greatly enhance the proper and quick investment decision for the preliminary plant design problem confronted with economic situation.

  • PDF

An Analysis on the Long-Term Runoff of the Yong San River (영산강의 장기유출량에 관한 고찰)

  • 한상욱;정종수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.18 no.3
    • /
    • pp.4184-4194
    • /
    • 1976
  • Located in the southwestern part of Korea, the Yong San Gang river flows generally northeast to southwest, and because of the specific location, topography and climate, the basin area is subject to recurrent drought and flood damages. To eliminate the cause of such damages and ensure an increase in the farm income by means of effective irrigation supply and increased cropping intensity, efforts are being made to speed up implementation of an integrated agricultural development project which would include construction. of an estuary dam and irrigation facilities as well as land development and tidal reclarnation. In formulating a basin development project plan, it is necessary to study a series of long-term runoff data. The catchment area at the proposed estuary damsite is 3,471$\textrm{km}^2$ with the total length of the river channel up to this point reaching 138km. An analysis of runoff in this area was carried out. Rainfall was estimated by the Thiessen Network based on records available from 15 of the rainfall observation stations within the area. Out of the 15 stations, Kwang Ju and Mok Po stations were keeping long-term precipitation records exceeding some 60 years while the others were in possession of only 5-10 years records. The long-term records kept by those stations located in the center of the basin were used as base records and records kept by the remaining stations were supplemented using the coefficient of correlation between the records kept by the base stations and the remainder. The analyses indicate that the average annual rainfall measured at Kwang Ju during 1940-1972 (33 years) amounts to 1,262mm and the areal rainfall amounts to 1,236mm. For the purpose of runoff analysis, 7 observatories, were set up in the middle and lower reaches of the river and periodic measurements made by these stations permitted analysis of water levels and river flows. In particular, the long-term data available from Na Ju station significantly contributed to the analysis. The analysis, made by 4-stage Tank method, shows that the average annual runoff during 1940-1972 amounts to 2,189 million ㎥ at the runoff rate of 51%. As for the amount of monthly runoff, the maximum is 484.2 million ㎥ in July while the minimum is 48.3 million ㎥ in January.

  • PDF

PIV Measurement of Pulsatile Flows in 3D Curved Tubes Using Refractive Index Matching Method (3차원 곡관에서의 굴절률 일치법을 이용한 맥동 유동의 PIV 측정)

  • Hong, Hyeon Ji;Ji, Ho Seong;Kim, Kyung Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.8
    • /
    • pp.511-517
    • /
    • 2016
  • Three-dimensional models of stenosis blood vessels were prepared using a 3D printer. The models included a straight pipe with axisymmetric stenosis and a pipe that was bent $10^{\circ}$ from the center of stenosis. A refractive index matching method was utilized to measure accurate velocity fields inside the 3D tubes. Three different pulsatile flows were generated and controlled by changing the rotational speed frequency of the peristaltic pump. Unsteady velocity fields were measured by a time-resolved particle image velocimetry method. Periodic shedding of vortices occurred and moves depended on the maximum velocity region. The sizes and the positions of the vortices and symmetry are influenced by mean Reynolds number and tube geometry. In the case of the bent pipe, a recirculation zone observed at the post-stenosis could explain the possibility of blood clot formation and blood clot adhesion in view of hemodynamics.

Optimal Design Of Batch-Storage Network with Financial Transactions and Cash Flows (현금흐름을 포함하는 회분식 공정-저장조 망구조의 최적설계)

  • ;Lee, Euy-Soo;Lee, In-Beom;Yi, Gyeong-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.11
    • /
    • pp.956-962
    • /
    • 2005
  • This paper presents an integrated analysis of production and financing decisions. We assume that a cash storage unit is installed to manage the cash flows related with production activities such as raw material procurement, process operating setup, Inventory holding cost and finished product sales. Temporarily financial investments are allowed for more profit. The production plant is modeled by the Batch-Storage Network with Recycle Streams in Yi and Reklaitis (2003). The objective function of the optimization is minimizing the opportunity costs of annualized capital investment and cash/material inventory while maximizing stockholder's benefit. No depletion of all the material and cash storage units is major constraints of the optimization. A novel production and inventory analysis formulation, the PSW(Periodic Square Wave) model, provides useful expressions for the upper/lower bounds and average level of the cash and material inventory holdups. The expressions for the Kuhn-Tucker conditions of the optimization problem can be reduced to two subproblems and analytical lot sizing equations under a mild assumption about the cash flow pattern of stockholder's dividend. The first subproblem is a separable concave minimization network flow problem whose solution yields the average material flow rates through the networks. The second subproblem determines the decisions about financial Investment. Finally, production and financial transaction lot sizes and startup times can be determined by analytical expressions as far as the average flow rates are calculated. The optimal production lot and storage sizes considering financial factors are smaller than those without such consideration. An illustrative example is presented to demonstrate the results obtainable using this approach.