• 제목/요약/키워드: Periodic B.C

검색결과 91건 처리시간 0.026초

벌크형 와이어직조 카고메 트러스 PCM의 압축거동 (I) - 균일 변형 상계해 - (Mechanical Behaviors under Compression in Wire-Woven Bulk Kagome Truss PCMs (I) - Upper Bound Solution with Uniform Deformation -)

  • 현상일;최지은;강기주
    • 대한기계학회논문집A
    • /
    • 제31권6호
    • /
    • pp.694-700
    • /
    • 2007
  • Recently, a new cellular metal, WBK(Wire woven Bulk Kagome) has been introduced. WBK is fabricated by assembling metal wires in six directions into a Kagome-like truss structure and by brazing it at all the crossings. Wires as the raw material are easy to handle and to attain high strength with minimum defect. And the strength and energy absorption are superior to previous cellular metals. Therefore, WBK seems to be promising once the fabrication process for mass production is developed. In this paper, an upper bound solution for the mechanical properties of the bulk WBK under compression is presented. In order to simulate uniform behavior of WBK consisted of perfectly uniform cells, a unit cell of WBK with periodic boundary conditions is analyzed by the finite element method. In comparison with experimental test results, it is found that the solution provides a good approximation of the mechanical properties of bulk WBK cellular metals except for Young's modulus. And also, the brazing joint size does not have any significant effect on the properties with an exception of an idealized thin joint.

ON THE DIFFERENCE EQUATION $x_{n+1}=\frac{a+bx_{n-k}-cx_{n-m}}{1+g(x_{n-l})}$

  • Zhang, Guang;Stevic, Stevo
    • Journal of applied mathematics & informatics
    • /
    • 제25권1_2호
    • /
    • pp.201-216
    • /
    • 2007
  • In this paper we consider the difference equation $$x_{n+1}=\frac{a+bx_{n-k}\;-\;cx_{n-m}}{1+g(x_{n-l})}$$ where a, b, c are nonegative real numbers, k, l, m are nonnegative integers and g(x) is a nonegative real function. The oscillatory and periodic character, the boundedness and the stability of positive solutions of the equation is investigated. The existence and nonexistence of two-period positive solutions are investigated in details. In the last section of the paper we consider a generalization of the equation.

Uniformity Optimization of TFTs Fabricated on 2-shot SLS-Processed Si Films

  • Turk, Brandon A.;Wilt, P.C. Van Der;Crowder, M.A.;Voutsas, A.T.;Limanov, A.B.;Chung, U.J.;Im, James S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1750-1755
    • /
    • 2006
  • Nonoptimal placement of short-channel-length TFTs in large-grained polycrystalline Si films with a periodic microstructure, as for instance obtained via 2-shot SLS, can potentially lead to degradation in the overall uniformity of the resultant devices. In this paper, we explain and demonstrate that by simply introducing a well-defined misorientation between the devices and the periodic microstructure, it is possible to significantly reduce (and potentially entirely eliminate) the device nonuniformity problem that can arise from such a cause.

  • PDF

GROUPS HAVING MANY 2-GENERATED SUBGROUPS IN A GIVEN CLASS

  • Gherbi, Fares;Trabelsi, Nadir
    • 대한수학회보
    • /
    • 제56권2호
    • /
    • pp.365-371
    • /
    • 2019
  • If 𝖃 is a class of groups, denote by F𝖃 the class of groups G such that for every $x{\in}G$, there exists a normal subgroup of finite index H(x) such that ${\langle}x,h{\rangle}{\in}$ 𝖃 for every $h{\in}H(x)$. In this paper, we consider the class F𝖃, when 𝖃 is the class of nilpotent-by-finite, finite-by-nilpotent and periodic-by-nilpotent groups. We will prove that for the above classes 𝖃 we have that a finitely generated hyper-(Abelian-by-finite) group in F𝖃 belongs to 𝖃. As a consequence of these results, we prove that when the nilpotency class of the subgroups (or quotients) of the subgroups ${\langle}x,h{\rangle}$ are bounded by a given positive integer k, then the nilpotency class of the corresponding subgroup (or quotient) of G is bounded by a positive integer c depending only on k.

Rhythmic Expression of Mitogen Activated Protein Kinase Activity in Rice

  • Rao, Kudupudi Prabhakara;Vani, Gubbala;Kumar, Kundan;Sinha, Alok Krishna
    • Molecules and Cells
    • /
    • 제28권5호
    • /
    • pp.417-422
    • /
    • 2009
  • Mitogen activated protein kinase (MAPK) are known to get activated during various stress signals and transduce the message from the cell membrane to the nucleus for appropriate cellular reorganization. Though, a certain basal activity of MAPK is often observed in the control plants. Prolonged exposure of rice plants to lowered or elevated temperature exhibited a rhythm in the activation of MAPKs. We analyzed existence of a possible endogenous rhythm in the activity of MAPKs in rice plants. The plants growing at constant temperature entrained in 16/8 h day-night cycle showed diurnal rhythm in activity. When the activation of MAPK was tested under continuous conditions by shifting plants to continuous darkness for a period of 72 h, the periodic rhythm persisted and followed a circadian pattern. Analysis of the transcripts of group A, B and C members of MAPKs under above conditions by quantitative real time PCR revealed that the members of group C exhibit periodic rhythm. Our data indicates that the MAP kinase activity in rice follows rhythmic expression in a circadian manner.

저손실 Ti : $LiNbO_3$ 광도파로의 주기적 분극 반전과 광학특성 (Periodically domain inversion and optical properties of low-loss Ti : $LiNbO_3$ waveguides)

  • 양우석;권순우;이형만;김우경;윤대호;이한영
    • 한국결정성장학회지
    • /
    • 제16권2호
    • /
    • pp.49-52
    • /
    • 2006
  • 저손실 Ti:$LiNbO_3$ 광도파로 기판에 외부전계 인가법을 사용하여 주기적으로 도메인을 반전시켰다. $LiNbO_3$의 -Z 면에 Ti 패턴 형성 후 약 $1060^{\circ}C$에서 열처리 과정을 통해 광도파로를 형성하였으며, 제작된 광도파로의 광전송 손실은 ${\sim}0.1dB/cm$ 였다. 도메인 반전을 위해 +Z면에 주기적인 전극 패턴을 형성하였으며, 외부전계의 균일한 인가를 위해 LiCl 전해 용액을 사용하여 도메인을 반전 시켰다. 선택적 화학식각을 통해, 약 $16{\mu}m$의 도메인 반전 주기를 확인 할 수 있었으며, 주기적 도메인 반전구조를 갖는 Ti : $LiNbO_3$ 도파로의 비선형 특성을 측정하였다.

차동전류의 변화율을 이용한 변압기의 여자돌입과 내부사고 구분 알고리즘 (A Discriminating Algorithm between Magnetizing Inrush and Internal Faults of Transformers Using Difference of a differential current)

  • 강용철;이병은;윤재성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 A
    • /
    • pp.171-173
    • /
    • 2000
  • This paper presents a discriminating algorithm between magnetizing inrush and internal faults of transformers using difference of a differential current. Incase of inrush, change of magnetizing inductance repeats. Thus, second difference of differential current periodically shows pulse while periodic pulse is not represented in case of internal winding fault. The proposed algorithm is suitable irrespective of the amount of remanent flux.

  • PDF

ON GENERALIZED FLOQUET SYSTEMS II

  • EI-Owaidy, H.;Zagrout, A.A.
    • Kyungpook Mathematical Journal
    • /
    • 제27권1호
    • /
    • pp.35-41
    • /
    • 1987
  • Consider the system (i) x'=Ax. Let ${\Phi}$ be its fundamental matrix solution. If there is w>0 such that A(t+w)-A(t) commutes with ${\Phi}$ for all t, then we call this system a "generalized" Floquet system or a "G. F. system". We show that $A(t+w)-A(t)=B_1$=constant if and only if $A(t)=C+B_1t/w+Q(t)$, Q is periodic of period w>0. For this A(t) We prove that if all eigenvalues of $B_1$ have negative real parts, then the origin is asumptotically stable. We find a growth condition for a continuous D(t) which guarantees that all solutions of z'=[A(t)+D(t)]z are bounded if all solutions of the G. F. system (i) are bounded. Combining the foregoing results yield a class of perturbed G. F. operators all of whose solutions are bounded.

  • PDF

자연적 가족계획 방법에 대한 이론적 고찰 (A Theoretical Review on the Natural Family Planning Method)

  • 박신애
    • 지역사회간호학회지
    • /
    • 제7권2호
    • /
    • pp.410-419
    • /
    • 1996
  • This study was reviewed from 1000 articles related to family planning from 1970 to 1990 and 20 articles associated with natural family planning from 1980 until the present. The purpose of natural family planning(NFP) is to identify the time ovulation of women themselves, to have intercourse with periodic abstinence, and to deliver a healthy child. The ultimate goal of NFP is to promote the family's health. The NFP method is described as periodic abstinence of intercourse to avoid pregnancy by identifying the ovulation time in the menstration cycle. Clinical symptoms and signs of reflection underlying changes in Estrogen and Progesterone are the change of basal body temperature, the change of cervical mucus and cervix, abdominal pain and breast tenderness. The types of NFP are the calender rthythm method, basal body temperature methods, cervical mucus method, symptothermal method, cyclo-thermal method and home based ovulation test kits. Recently the cyclo-thermal method involved. It is calendar rhythm method applied to B.B.T. For the cervical mucus method, when the estrogen level in the blood concentration is increased, the mucus begins to excrete, the amount of moist mucus increases while the mucus is clear, slippery, and smooth. For 3 days, this timing can be considered contraception. Fertility is at a maximum on the day mucus appears, abstinence for 3 days is a type of contraception. Sexual intercourse on a maximum day of mucus maximizes pregnancy potential. But, the contraception depends on the practice of a perfect rule. For basal body temperature methods, at ovulation time, the temperature increases $0.2^{\circ}C-0.5^{\circ}C$. Through the review of literature a high temperature above $0.2^{\circ}C$ for 3 days indicates that the previous 6 day period was ovulation and fertilization. The Symptothermal method is used to determine the prediction of ovulation through the observation of mucus excretion, high temperature, the change of cervical mucus, low abdominal pain, vaginal discharge, and breast change. Home based ovulation test kits are cervico-vaginal fluid aspiration, test a digital electric thermometer, body fluid(blood, saliva, urine) test kits, They are on the market. However, research on the contraception method is still in progress. For pregnancy it is still too early to use home based ovulation test kits because of deficit of reliability and simplicity more research on the technology is needed. It is suggested that NFP methods be included in nursing curriculum in order to educate NFP users how to effectively use NFP methods. Furthermore, this study has implications for the dissemination of NFP methods in terms of Korean policies of family planning and the support of community welfare agences.

  • PDF

Distribution and Antifungal Susceptibilities of Candida Species Isolated from Blood Cultures from 2016 to 2023 years

  • Seung Bok Hong
    • 대한의생명과학회지
    • /
    • 제30권2호
    • /
    • pp.73-80
    • /
    • 2024
  • The aim of this study was to investigate the distribution and antifungal susceptibilities of Candida spp. from blood culture to provide useful information on empirical treatment of Candidemia. We investigated distribution and antifungal susceptibilities of Candida spp. isolated from blood culture during an 8-years (2016-2023) in a C-University hospital. Over 8 years, 1,182 Candida strains from blood culture were isolated, which was fourth most common cause of bloodstream infection. Among nonduplicated 350 Candida strains, C. albicans was the most common with 45.43%, followed by C. glabrata (17.43%), C. tropicalis (17.43%), C. parapsilosis (14.86%), C. guilliermondii (1.71%), C. krusei (0.86%), C. lusitaniae (0.86%), C. ciferrii (0.57%). In the antifungal susceptibility testing on 323 Candida strains, the non-susceptibility rate was 2.48% for amphotericin B, 1,71% for flucytosine, 3.09% for fluconazole, 4.66% for voriconazole, 5.57% for caspofungin, and 0.62% for micafungin. In particular, C. albicans showed non-susceptibility of 8.23% to voriconazole, and C. glabrata showed 14.81% and 24.59% to fluconazole and caspofungin, respectively. These data showed that the prevalence of candidemia is very common, and antifungal resistance in Candida spp., especially C. glabrata, is increasing. Therefore, periodic surveillance of prevalence and antifungal susceptibility of blood culture is very important for clinical laboratory.