• Title/Summary/Keyword: Performance-based approach

Search Result 4,710, Processing Time 0.032 seconds

Development of Expertise-based Safety Performance Evaluation Model

  • Yoo, Wi Sung;Lee, Ung-Kyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.2
    • /
    • pp.159-168
    • /
    • 2013
  • Construction projects have become increasingly complex in recent years, resulting in substantial safety hazards and frequent fall accidents. In an attempt to prevent fall accidents, various safety management systems have been developed. These systems have mainly been evaluated qualitatively and subjectively by practitioners or supervisors, and there are few tools that can be used to quantitatively evaluate the performance of safety management systems. We propose an expertise-based safety performance evaluation model (EXSPEM), which integrates a fuzzy approach-based analytic hierarchy process and a regression approach. The proposed model uses S-shaped curves to represent the degree of contribution by subjective expertise and is verified by a genetic algorithm. To illustrate its practical application, EXSPEM was applied to evaluate the safety performance of a newly developed real-time mobile detector monitoring system. It is expected that this model will be a helpful tool for systematically evaluating the application of a robust safety control and management system in a complex construction environment.

Case-based Software Project Network Generation by the Least Modification Principle (사례의 수정최소화 기법에 의한 소프트웨어 프로젝트 네트워크 생성시스템)

  • Lee, No-Bok;Lee, Jae-Kyu
    • Asia pacific journal of information systems
    • /
    • v.13 no.1
    • /
    • pp.103-118
    • /
    • 2003
  • Software project planning is usually represented by a project activity network that is composed of stages of tasks to be done and precedence restrictions among them. The project network is very complex and its construction requires a vast amount of field knowledge and experience. So this study proposes a case-based reasoning approach that can generate the project network automatically based on the past cases and modification knowledge. For the case indexing, we have adopted 17 factors, each with a few alternative values. A special structure of this problem is that the modification effort can be identified by each factor independently. Thus it is manageable to identify 85 primitive modification actions(add and delete activities) and estimate its modification efforts in advance. A specific case requires a combination of primitive modifications. Based on the modification effort knowledge, we have adopted the Least Modification approach as a metric of similarity between a new project and past cases. Using the Least Modification approach and modification knowledge base, we can automatically generate the project network. To validate the performance of Least Modification approach, we have compared its performance with an ordinary minimal distance approach for 21 test cases. The experiment showed that the Least Modification approach could reduce the modification effort significantly.

A Systematic Approach for Designing a Self-Tuning Power System Stabilizer Based on Artificial Neural Network

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.281-286
    • /
    • 2005
  • The main objective of the research work presented in this article is to present a systematic approach for designing a multilayer feed-forward artificial neural network based self-tuning power system stabilizer (ST-ANNPSS). In order to suggest an approach for selecting the number of neurons in the hidden layer, the dynamic performance of the system with ST-ANNPSS is studied and hence compared with that of conventional PSS. Finally the effect of variation of loading condition and equivalent reactance, Xe is investigated on dynamic performance of the system with ST-ANNPSS. Investigations reveal that ANN with one hidden layer comprising nine neurons is adequate and sufficient for ST-ANNPSS. Studies show that the dynamic performance of STANNPSS is quite superior to that of conventional PSS for the loading condition different from the nominal. Also it is revealed that the performance of ST-ANNPSS is quite robust to a wide variation in loading condition.

  • PDF

Spatial Multiuser Access for Reverse Link of Multiuser MIMO Systems

  • Shin, Oh-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10A
    • /
    • pp.980-986
    • /
    • 2008
  • Spatial multiuser access is investigated for the reverse link of multiuser multiple-input multiple-output (MIMO) systems. In particular, we consider two alternative a aches to spatial multiuser access that adopt the same detection algorithm at the base station: one is a closed-loop approach based on singular value decomposition (SVD) of the channel matrix, whereas the other is an open-loop approach based in space-time block coding (STBC). We develop multiuser detection algorithms for these two spatial multiuser access schemes based on the minimum mean square error (MMSE) criterion. Then, we compare the bit error rate (BER) performance of the two schemes and a single-user MIMO scheme. Interestingly, it is found that the STBC approach can provide much better BER performance than the SVD approach as well as than a single-user MIMO scheme.

Parametric identification of the Bouc-Wen model by a modified genetic algorithm: Application to evaluation of metallic dampers

  • Shu, Ganping;Li, Zongjing
    • Earthquakes and Structures
    • /
    • v.13 no.4
    • /
    • pp.397-407
    • /
    • 2017
  • With the growing demand for metallic dampers in engineering practice, it is urgent to establish a reasonable approach to evaluating the mechanical performance of metallic dampers under seismic excitations. This paper introduces an effective method for parameter identification of the modified Bouc-Wen model and its application to evaluating the fatigue performance of metallic dampers (MDs). The modified Bouc-Wen model which eliminates the redundant parameter is used to describe the hysteresis behavior of MDs. Relations between the parameters of the modified Bouc-Wen model and the mechanical performance parameters of MDs are studied first. A modified Genetic Algorithm using real-integer hybrid coding with relative fitness as well as adaptive crossover and mutation rates (called RFAGA) is then proposed to identify the parameters of the modified Bouc-Wen model. A reliable approach to evaluating the fatigue performance of the MDs with respect to the Chinese Code for Seismic Design of Buildings (GB 50011-2010) is finally proposed based on the research results. Experimental data are employed to demonstrate the process and verify the effectiveness of the proposed approach. It is shown that the RFAGA is able to converge quickly in the identification process, and the simulation curves based on the identification results fit well with the experimental hysteresis curves. Furthermore, the proposed approach is shown to be a useful tool for evaluating the fatigue performance of MDs with respect to the Chinese Code for Seismic Design of Buildings (GB 50011-2010).

Quantifying Risk Factors on Cost Performance By Characterizing Capital Facility Projects

  • Jang, Myung-Hoon;Cha, Hee-Sung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.7 no.4 s.32
    • /
    • pp.177-183
    • /
    • 2006
  • Risk-based estimation has been successfully introduced into the construction industry. By incorporating historical data associated with probability analysis, risk-based estimate is an effective decision support aid in considering whether to launch a particular project. The industry challenges, however, especially related with management issues, such as labor shortage, wage growth, and supply chain complexity, have often resulted in poor cost performance. The insufficient assessing the project characteristics (i.e., resource availability, project complexity, and project delivery method) can be the main reasons in the poor cost performance. Because the accuracy level of cost performance prediction can be enhanced by extensive evaluation of the subject project characteristics, a new approach for predicting cost performance in an earlier stage of a project can improve the Industry substantiality, in other words, value maximization. The purpose of this paper is to develop a new methodology in developing a risk-based estimate tool by incorporating extensive project characteristics. To do this, an extensive industry survey was conducted from both private and public sectors in building industry in Korea. In addition, significant project characteristics were identified in terms of cost performance indicator. Although the data collection is limited to Korean industry the suggested approach provides the industry with a straightforward methodology in risk management. As many researchers maintained that front-end planning efforts are crucial in achieving the successful outcome in building projects, the new method for risk-based estimation can Improve the cost performance as well as enhance the fulfillment in terms of business sustainability.

Resilient Packet Transmission (RPT) for the Buffer Based Routing (BBR) Protocol

  • Rathee, Geetanjali;Rakesh, Nitin
    • Journal of Information Processing Systems
    • /
    • v.12 no.1
    • /
    • pp.57-72
    • /
    • 2016
  • To provide effective communication in the wireless mesh network (WMN), several algorithms have been proposed. Since the possibilities of numerous failures always exist during communication, resiliency has been proven to be an important aspect for WMN to recover from these failures. In general, resiliency is the diligence of the reliability and availability in network. Several types of resiliency based routing algorithms have been proposed (i.e., Resilient Multicast, ROMER, etc.). Resilient Multicast establishes a two-node disjoint path and ROMER uses a credit-based approach to provide resiliency in the network. However, these proposed approaches have some disadvantages in terms of network throughput and network congestion. Previously, the buffer based routing (BBR) approach has been proposed to overcome these disadvantages. We proved earlier that BBR is more efficient in regards to w.r.t throughput, network performance, and reliability. In this paper, we consider the node/link failure issues and analogous performance of BBR. For these items we have proposed a resilient packet transmission (RPT) algorithm as a remedy for BBR during these types of failures. We also share the comparative performance analysis of previous approaches as compared to our proposed approach. Network throughput, network congestion, and resiliency against node/link failure are particular performance metrics that are examined over different sized WMNs.

Secure and Efficient Tree-based Group Diffie-Hellman Protocol

  • Hong, Sung-Hyuck
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.2
    • /
    • pp.178-194
    • /
    • 2009
  • Current group key agreement protocols(often tree-based) involve unnecessary delays because members with low-performance computer systems can join group key computation. These delays are caused by the computations needed to balance a key tree after membership changes. An alternate approach to group key generation that reduces delays is the dynamic prioritizing mechanism of filtering low performance members in group key generation. This paper presents an efficient tree-based group key agreement protocol and the results of its performance evaluation. The proposed approach to filtering of low performance members in group key generation is scalable and it requires less computational overhead than conventional tree-based protocols.

Reliability-Based Topology Optimization Using Single-Loop Single-Vector Approach (단일루프 단일벡터 방법을 이용한 신뢰성기반 위상최적설계)

  • Bang Seung-Hyun;Min Seung-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.889-896
    • /
    • 2006
  • The concept of reliability has been applied to the topology optimization based on a reliability index approach or a performance measure approach. Since these approaches, called double-loop single vector approach, require the nested optimization problem to obtain the most probable point in the probabilistic design domain, the time for the entire process makes the practical use infeasible. In this work, new reliability-based topology optimization method is proposed by utilizing single-loop single-vector approach, which approximates searching the most probable point analytically, to reduce the time cost. The results of design examples show that the proposed method provides efficiency curtailing the time for the optimization process and accuracy satisfying the specified reliability.

Damage-Based Seismic Performance Evaluation of Reinforced Concrete Frames

  • Heo, YeongAe;Kunnath, Sashi K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.3
    • /
    • pp.175-182
    • /
    • 2013
  • A damage-based approach for the performance-based seismic assessment of reinforced concrete frame structures is proposed. A new methodology for structural damage assessment is developed that utilizes response information at the material level in each section fiber. The concept of the damage evolution is analyzed at the section level and the computed damage is calibrated with observed experimental data. The material level damage parameter is combined at the element, story and structural level through the use of weighting factors. The damage model is used to compare the performance of two typical 12-story frames that have been designed for different seismic requirements. A series of nonlinear time history analyses is carried out to extract demand measures which are then expressed as damage indices using the proposed model. A probabilistic approach is finally used to quantify the expected seismic performance of the building.