
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 2, April 2009 178
Copyright ⓒ 2009 KSII

The research was partially supported by the Department of International Affairs at Texas Tech University. I deeply
appreciate the unknown reviewers’ invaluable comments and very quick responses during the review time. Also I
would like to express my great thanks to Jane Bell who is an International Cultural Center director.

DOI: 10.3837/tiis.2009.02.004

Secure and Efficient Tree-based Group
Diffie-Hellman Protocol

Sunghyuck Hong

Department of International Affairs, Texas Tech University
Lubbock, Texas 79409 – USA

[e-mail: sunghyuck.hong@ttu.edu]

Received February 20, 2009; revised March 27, 2009; accepted April 4, 2009;
published April 25, 2009

Abstract

Current group key agreement protocols (often tree-based) involve unnecessary delays because
members with low-performance computer systems can join group key computation. These
delays are caused by the computations needed to balance a key tree after membership changes.
An alternate approach to group key generation that reduces delays is the dynamic prioritizing
mechanism of filtering low performance members in group key generation. This paper
presents an efficient tree-based group key agreement protocol and the results of its
performance evaluation. The proposed approach to filtering of low performance members in
group key generation is scalable and it requires less computational overhead than conventional
tree-based protocols.

Keywords: Group key agreement, group key management, secure group communication

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 2, April 2009 179

1. Introduction

An Enhanced Tree-based Group Diffie-Hellman (ETGDH) protocol is proposed that
improves the existing TGDH, a tree-based group key agreement protocol that is currently the
most efficient such protocol. The overall efficiency of TGDH is always determined by the
slowest member’s performance in generating a group key, because group communication
under the TGDH protocol does not start until all members have completed generation of the
group key. Under ETGDH, unnecessary delays are avoided, as low performance members are
not allowed to participate in group key generation.

2. Enhanced Tree-Based Group Diffie-Hellman
To generate a group key efficiently, there must be a group controller. The group controller is
the last member to join the group in the Enhanced Tree-based Group Diffie-Hellman
(ETGDH) protocol. The newest member always plays the role of the group controller. The
group controller is responsible for managing group key generation. He/she initiates group key
generation for all members by sending them his/her blind key. Each member Mi selects a
random private number ri and computes Mi = gri mod p. All members participate in group key
generation. When the group key has been computed, the highest performance member
computes the final group key and distributes it to all members, and then group communication
begins. Whenever membership changes, the group key must be regenerated. The definitions
given in Table 1 are used in the subsequent figures and equations.

Table 1. Definitions

Symbol Definition
n The number of group members
G A set of current members
GP A set of partitioned group members
T A key tree
T* A modified tree after membership operations
Ts The sub tree of T
Gc A group controller
Msc A subgroup controller
Md A leaving member
Mi ith group member; i ∈ [1,n]

*
pZ Integer set; *

pZ ={1,2,…, p }

p, g A large prime number; p ∈ *
pZ , exponentiation base; 1 < g < p and g ∈ *

pZ

<l, v> vth node at level l in a tree (where 0≤v≤2l – 1)
K<l, v> <l,v>th node’s random private key
SK<l,v> <l,v>th node’s session key

f(x) gx mod p
BK<l, v> <l,v>th node’s blind (public) key, f(K<l, v>) = g K<l, v> mod p
Tc(Mi) ith group member’s response time for generating a key pair.

Fig. 1 and Fig. 2 show a conventional tree-based group key agreement protocol used to

180 Hong: Secure and Efficient Tree-based Group Diffie-Hellman Protocol

generate a group key. An example of key tree-based group key generation is shown in Fig. 2.
Each node <l, v>’s private key and public key represent K<l, v> and BK<l, v> = gK<l, v> mod p
respectively, where g and p are public parameters. Every member holds the secret keys on the
key path. For simplicity, each member knows the blind keys on the key path. The blind keys
are the shaded nodes in Fig. 2.

Fig. 1. Node <l,v>’s Session Key Generation

Fig. 2. Binary Key Tree

The random Session Key (SK) of the non-leaf node <l, v> in Fig. 1 is generated by:

SK<l, v> = (BK<l+1, 2v>)K<l+1, 2v+1> = (gK<l+1, 2v>)K<l+1, 2v+1> mod p (1)
SK<l, v> = (BK<l+1, 2v+1>)K<l+1, 2v> = (gK<l+1, 2v+1>)K<l+1, 2v> mod p (2)

SK<l, v> = gK<l+1, 2v>K<l+1, 2v+1> mod p (3)

Eq. (1) and Eq. (2) contain two exponents, which are the blind keys of node <l+1,2v> and
node <l+1,2v+1> in Fig. 1. Node <l,v>’s session key is given by Eq. (3). Each member in a
leaf node randomly selects a private key and generates a blind key. Fig. 2 shows a tree for six
members, where M1 can compute SK<2,0>, SK<1,0>, SK<0,0> using the blind keys BK<3,0>, BK<3,1>,
BK<2,1>, and BK<1,1> [1].

The final group key G is computed as follows:

m od

3, 2 3,3
2 ,1 2 , 2

3,0 3,1 ()
()

K K
K K

K K
g

g
g

G pg

< > < >
< > < >

< > < >

= (4)

<l,v>

<l+1,2v> <l+1,2v+1>

BK<l+1, 2V>

BK<l+1, 2V+1>

<0,0>

<1,0> <1,1>

<2,0> <2,1> <2,2> <2,3>

<3,0>

<3,1> <3,2> <3,3>

M3 M4

M6 M5M2M1

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 2, April 2009 181

Note that the group key G in Eq. (4) is computed in terms of all the blind keys on the key

path in the key generation tree. The Group Diffie-Hellman (GDH) key agreement protocol [2]
is an extension of the Diffie-Hellman (DH) key exchange protocol [3].

3. Group Key Secrecy and Security Model
Group key (GK) management is concerned with efficient generation of a GK in order to
achieve and maintain secure communication. This process has four security requirements: (1)
GK secrecy, (2) Backward secrecy, (3) Forward secrecy, and (4) Key independence [4]. Each
of these security requirements are defined as follows:

 Assume that a GK is changed m times and the sequence of GKs is given by {K0, K1,…, Km-1,
Km}.
1. GK Secrecy guarantees that it is computationally infeasible for a passive adversary to

discover any GK, when Ki ∈ K for all i.
2. Forward Secrecy guarantees that a passive adversary who knows a contiguous subset of

old GKs (for example {K0,K1,…,Ki}) cannot discover any subsequent GK, Kj when j > i for
all i and j

3. Backward Secrecy guarantees that a passive adversary who knows a contiguous subset of
GKs (for example {Ki,Ki+1,…,Kj}) cannot discover a preceding GK, Kl when l < i < j for all
l, j, k,

4. Key Independence guarantees that a passive adversary who knows a proper subset of GKs
Ksubset ⊂ K cannot discover any other GK, when Ki ∈ (K – Ksubset).

Before examining GK secrecy, the possible types of security attacks must be defined.
There are two types of security attacks in group communication: active attacks and passive

attacks. Active attacks involve injecting, deleting, delaying, and modifying protocol messages.
Protecting against active attacks is beyond the scope of this paper. The security of network
protocols such as Public Key Infrastructure (PKI) is assumed and we focus on protection from
passive attacks.

When considering passive attacks, eavesdropping is the most significant threat. Efficient
generation of GKs that meet the aforementioned four security requirements addresses the
threat of eavesdropping. Secure GKs prevent attackers from discovering the GK and using it
to decrypt the message.

A GK is a common secret key, which means that one key can encrypt/decrypt messages
during communication, (i.e., it is a symmetric cipher). For symmetric ciphers, the most well
known passive attack is the brute-force attack [5], which is the process of enumerating all
possible keys until the proper key needed to decrypt a given cipher text into the correct plain
text is found. All symmetric encryption algorithms will eventually fall to brute-force attacks if
there is enough time.

In a brute-force attack, the expected number of trials needed to find the correct key is equal
to half the size of the key space (i.e., the expected number of trials is the average of the best-
and worst-case number of trials needed to find the right key). Symmetric ciphers with keys of
64 bits or less are vulnerable to brute force attacks [5]. Therefore, the key size must be large
enough to prevent such an attack on symmetric ciphers. If the number of possible keys is
enough to delay a brute-force attack, then the algorithm is secure [5]. GKs of 1,024 bits are
secure with current technology [6]. A brute-force attack needs 21,024/2 attempts to find the GK;
such an approach is computationally infeasible. A cryptographic protocol is provably secure if

182 Hong: Secure and Efficient Tree-based Group Diffie-Hellman Protocol

it can be shown to be as difficult to break as solving a well-known number-theoretic problem,
such as the computation of discrete logarithms.

Another important security requirement of protecting against passive attacks via GK secrecy
is maintaining key freshness. Whenever the group membership changes the GK is
collaboratively regenerated. A GK is always fresh after a membership change; there is no
chance to use an old key. In addition, GKs can be changed at regular or irregular intervals in
order to ensure freshness. The fresher a GK, the more secure it is.
 Fig. 3 shows an overview of a secure group communication protocol that relies on the
Secure Spread Library tool key [7]. The Secure Spread Library is a group communication
toolkit for wide and local area networks; it provides all the services of traditional group
communication systems, including a multicast of messages to a group, network failure
detection, and group membership services [8]. In addition, the Spread provides the members’
login status to all members, so they can update the group key generation tree structure used to
generate the group key. After member authentication, secure group communication is ready to
start, and this must have a group key agreement protocol that can generate a group key in order
to protect message integration.

Fig. 3. Overview of Secure Group Communication

The principle of the ETGDH protocol relies on the premise that members in distributed

computing do not have equal computing power. In other words, this algorithm admits diversity
in member performance. Thus, during group communication, different roles should be
allocated to the proper members in the group. This depends on each member’s computing
performance, because a higher level of the group key generation tree consumes more

MAC based authentication

Secure Spread Library

Group Key Agreement Protocol

Member Authentication
Processes

Group Key
Generation

Secure Communication with
Group Key

Group Key
Distribution

Membership
Changed?

No

Yes

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 2, April 2009 183

computing time than lower levels.
Fig. 4 shows filtering of low performance members in the key tree. Leaf nodes represent

members (M1, M2, M3, M4, M5, M6, M7, and M8). The sibling nodes in the tree are <M1, M2>,
<M3, M4>, <M5, M6>, and <M7, M8>. Each member Mi generates a secret key K<l, v> as well as a
blind key BK<l, v>= gK<l, v> mod p. In addition, the response time for generating the keys is
measured, and then each member starts using Diffie-Hellman key exchange. For example, M1
and M2 exchange M1 (gK<3,0> mod p) and M2 (gK<3,1> mod p) in order to generate the sub-group
key gK<3,0>K<3,1> mod p.

Table 2. Key Generation

Key node Member Key Computation Process
<3,0> M1 gK<3,0> mod p
<3,1> M2 g K<3,1> mod p
<3,2> M3 g K<3,2> mod p
<3,3> M4 g K<3,3> mod p
<3,4> M5 g K<3,4> mod p
<3,5> M6 g K<3,5> mod p
<3,6> M7 g K<3,6> mod p
<3,7> M8 g K<3,7> mod p
<2,0> M2 g<3,0><3,1> = 3,0 3,1 mod

K K
g p< > < >

<2,1> M4 g<3,2><3,3> = 3,2 3,3 mod
K K

g p< > < >

<2,2> M6 g<3,4><3,5> = 3,4 3,5 mod
K K

g p< > < >

<2,3> M8 g<3,6><3,7> = 3,6 3,7 mod
K K

g p< > < >

<1,0> M4 g<2,0><2,1> =
3,0 3,1 3,2 3,3

mod
K K K Kg gg p
< > < > < > < >

<1,1> M8 g<2,2><2,3> =
3,4 3,5 3,6 3,7

mod
K K K Kg gg p
< > < > < > < >

<0,0> M8 g<1,0><1,1> =
3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7

mod
K K K K K K K Kg g g gg gg p
< > < > < > < > < > < > < > < >

Fig. 4. Key Generation Tree

After completing the leaf level computation, a session key in the next level is ready to be

generated. The group controller (who was the last member to join) determines which members
join in the next level by comparing each member’s response times, Tc(Mi). Assuming the

<0,0>

<1,0> <1,1>

<2,0> <2,1> <2,2> <2,3>

M1

<3,0> <3,1> <3,2> <3,3> <3,4> <3,5> <3,6> <3,7>

M2 M3 M4 M5 M7 M6 M8

184 Hong: Secure and Efficient Tree-based Group Diffie-Hellman Protocol

higher performance members are M2, M4, M6, and M8, they advance to the next key generation
until the final group key is obtained. The rest of the members wait until this has been
completed. The next subgroup key pairs are < M2, M4> and < M6, M8>. The higher
performance members regenerate the upper level session key. Finally, the highest performance
member M8 (See Table 2) generates the final group key and distributes it to the rest of the
members. Table 2 indicates that low performance members do not participate in generation of
the group key.

4. Protocol Requirements
The Enhanced Tree-based Group Diffie-Hellman (ETGDH) functions include member
authentication, group key generation, and distribution of the group key to all members. The
prototyping of ETGDH considers secure communication and algorithm efficiency during
normal operations. Most experiments consist of measuring the time required for member
authentication and group key generation.

Membership operations of the ETGDH protocol include join, leave, merge, and partition,
based on the following preliminary requirements:
• All members must use their own computers to communicate with others.
• All members must have their public keys (certificates) with a MAC address for member

authentication.
• The last member to login becomes the group controller and then starts group key

generation by sending his/her blind key to current members.
• In case the group controller leaves, the second latest member becomes the group

controller.
• Only approved members contribute an equal share to the group key. Non-authorized

members should not participate in group key generation while it is in progress.
• Each member is required to know all blind keys in the entire key tree.
• All members are required to generate a private key and a blind key. After the membership

changes, they must regenerate the group key for group key secrecy.

5. Membership Operations

A group key agreement protocol needs to provide membership operations to cope with
membership changes. The ETGDH includes protocols in support of the following operations:

 Join: a new member is added to group communication
 Leave: a member is removed from group communication
 Partition: a subset of members is split from group communication
 Merge: a partitioned group is merged with current group communication

5.1 Join Protocol
Suppose that the group size is n. The group members are M1, M2, M3,…, Mn-1, Mn for n < 100.
Following any membership change, all members independently update the group key
generation tree. Assuming that the underlying group communication system provides Virtual
synchrony [8], all members correctly compute the key tree after any membership event [1].
The Virtual Synchrony protocol is established over the set of core members that can
communicate with each other. This protocol provides guaranteed, in-order message delivery

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 2, April 2009 185

for message streams that potentially involve one sender and multiple receivers. This guarantee
is similar to the guarantees that TCP/IP provides for point-to-point message streams.

If the number of members is n, then a binary key tree of height ┌log2n┐ is generated. All
members are assigned from the leftmost to the rightmost leaf node on the tree according to the
order of login and the last member (i.e., the group controller Gc) is assigned to the rightmost
node <log2n, n-1 >. Fig. 5 shows the sequence of steps required for member Mj to join a group,
where Mj is a new member who becomes the group controller (Gc).

Events in the algorithms are described as follows:

A B

• The left side A is a group and the right side B is a group controller or a member.
• The arrow represents a control message.
• The destination can be either A or B.

Step 1: Each new member becomes a group controller (Gc) and broadcasts a request to generate the
group key by sending his blind key.

 Gc sends his blind key to all members to compute the keys.

Step 2: Every member:

 Updates the key tree (T*) by removing all keys on the key-path and adding a new member node
and a new intermediate node,

 Generates a private key and a blind key while measuring the response time of generating the key
pair Tc(Mi),

 Sends Tc(Mi) to Gc.
Step 3: The group controller (Gc):

 Determines which members will join in the next level of computing the group key by comparing
each member’s response time Tc(Mi) (ith member, i<n) of generating the key pair.

Step 4: Approved members join in order to compute the group key.
Step 5: When the group key has been generated, the group key is sent to all members.

Fig. 5. Join Protocol

Fig. 6 shows an example of member M5 joining a group. The rightmost node <2,3> in Fig.
6A becomes a new intermediate node in the updated Tree T* in Fig. 6B. The detailed steps are
as follows:

1. Rename node <2,3> in Fig. 6A to <3,0> in Fig. 6B
2. Generate a new intermediate node <2,3> and a new member node <3,1> in Fig. 6B
3. Promote <2,3> to the parent node of <3,0> and <3,1> in Fig. 6B

Since all members know BK<3,1>, approved members can compute the new group key

K<0,0> in the updated tree T* in Fig. 6B.

5.2 Leave protocol
When a member leaves the group, the group key must be recomputed for group key secrecy.
The leaving member broadcasts to all members in order to update the key tree structure. If the
approved member leaves, Gc determines a back-up member and allows him/her to join group
key generation. If the leaving member has a sibling node, then the sibling node is promoted to

Group G Gc
A blind key

186 Hong: Secure and Efficient Tree-based Group Diffie-Hellman Protocol

replace the leaving member’s parent node. In this case, only approved members contribute to
computing the group key. The major steps are shown in Fig. 7, where Md is leaving the group.

Fig. 8 shows an example of member M3 leaving the group. The detailed steps are as
follows:

1. Delete node <2,2> and the intermediate node <2,3> in Fig. 8A
2. Rename node <3,0> to <2,2> and <3,1> to <2,3> in Fig. 8B
3. Promote node <1,1> to the parent node of <2,2> and <2,3> in Fig. 8B

 (A) (B)

Fig. 6. Join Operation. A) Original Tree T, B) Updated Tree T*

 Step 1: The leaving member (Md):

 Broadcasts a control message to all members in order to update the key tree (T*).
 The leaving member (Md) and all the key nodes in the path up to the root

are removed.

Step 2: The group controller (Gc):

 Selects a new member to participate in generating the group key if the leaving
member Md is a group key generating member. Otherwise, this is not necessary.

Step 3: Only selected members start computing the group key using the new tree T*.
Step 4: When the group key has been generated, the group key is sent to all members.

Fig. 7. Leave Protocol

(A) (B)

Fig. 8. Leave Operation. A) Original Tree T, B) Updated Tree T*

<0,0>

<1,0> <1,1>

<2,0> <2,1> <2,2> <2,3>

M1 M2 M3 M4

<0,0>

<1,0> <1,1>

<2,0> <2,1> <2,2> <2,3>

M1 M2 M3

<3,1>

M5

<3,0>

New
Member

New Intermediate
Node Member

M4

<0,0>

<1,0> <1,1>

<2,0> <2,1> <2,2> <2,3>

M1 M2 M4 M5

<0,0>

<1,0> <1,1>

<2,0> <2,1> <2,2> <2,3>

M1 M2 M3
<3,1>

M4 M5

<3,0>a leaving member

Deleting the intermediate
node Member

Group G
A broadcast to leave

Md

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 2, April 2009 187

After updating the tree, approved members can compute the group key. Note that M3 cannot
compute the group key, even though it knows all the blind keys, because its share is no longer
part of the group key.

5.3 Partition protocol
Whenever there is a network fault, a group can be divided into several subgroups. The
partition protocol is a multi-round protocol which runs until every approved member
computes the new group key. If a network fault is detected, each remaining member updates
its tree by deleting all partitioned members as well as their respective parent nodes. Each
subgroup controller then computes all keys on its key-path as far up the tree as possible. Then,
each subgroup controller broadcasts the set of new blind keys. Upon receiving a broadcast,
each member checks whether the message contains a new set of blind keys. This procedure is
iterated until all members obtain the group key. In case there is a partition protocol, a subgroup
controller works as a group controller in the subgroup.

Fig. 9 illustrates the partition operation. Suppose the members M1 and M2 are partitioned
from M3, M4, and M5 in Fig. 10A. The rightmost node in each group becomes the subgroup
controller. In Fig. 10B, the subgroup controllers M2 and M5 broadcast a request to generate the
group key, thus, each group continues to communicate with the subgroup members using the
group key. The major steps are shown in Fig. 9.

Step 1: Every member in the subkey trees:

 Updates the subkey tree (Ts) by removing all leaving member nodes and their parent
nodes.

Step 2: The subgroup controller (Msc)
 Becomes the rightmost member of the subtree.
 Selects members for participating in generating the group key by checking each

member’s response time Tc(Mi) for generating the key pair.
 Generates a new share and computes all key pairs on the key path in the subkey tree Ts.

Step 3: Selected members start computing the group key using the updated subkey tree Ts
Step 4: When the group key has been generated, it is sent to all members.

Fig. 9. Partition Protocol

5.4 Merge protocol
After recovering from network failures, the subgroups can be merged into the original group.
In the first round of the merge protocol, each subgroup controller broadcasts his/her tree
information with all blind keys to the other subgroups. Upon receiving this message, all
members can uniquely and independently determine the merge position of the two trees. If the
two trees have the same height, one tree is joined to the root node (insertion node) of the other
tree. If the trees are of a different height, the smaller tree is joined to the larger.

The insertion node can be: 1) the rightmost smaller node (not necessarily a leaf node), if
joining would not increase the height of the tree or 2) the root node, if joining to any other node
would increase the height of the key tree. The rightmost member of the sub tree rooted at the
joining location becomes the subgroup controller of the key update operation. The rightmost
node in the updated tree T* becomes Gc and computes every key on the key-path and the
corresponding blind key. Then, he/she broadcasts the tree with the blind keys to the other
members. All members then have the complete set of blind keys, enabling them to compute all
keys on their key path. The major steps are shown in Fig. 11.

188 Hong: Secure and Efficient Tree-based Group Diffie-Hellman Protocol

<0,0>

<1,0> <1,1>

<2,0> <2,1> <2,2> <2,3>

M1 M2 M3

Tree T

<3,1>

M4 M5

<3,0>

Disconnection detected

Partitioned group

<0,0>

<1,0>

M1 M2

Tree Ts1

A subgroup controller

<1,1>

<0,0>

Tree Ts2

<1,0> <1,1>

<2,0>

M4

<2,1>

M5

M3

A subgroup controller

 (A) (B)

Fig. 10. Partition Operation. A) Original Tree T, B) Subtree Ts1 and Ts2

A merge example is shown in Fig. 12. The smaller tree’s merge node <0,0> in Fig. 12A and
the larger tree’s merge node <0,0> in Fig. 12B merge into the updated tree T* in Fig. 12C. The
group controller M5 in Fig. 12C broadcasts a request to generate a new group key. After each
member has completed the group key, secure group communication starts.

Step 1: Subgroup controller (Msc):

 Requests subgroup controllers for merger,
 Merges two groups and updates new tree (T*).

Step 2: The group controller (Gc):
 The Gc who is the rightmost leaf node in T* is automatically selected.
 Determines the members to participate in generating the group key by checking each member’s

response time Tc(Mi) for generating a key pair,
Step 3: Current members compute a private key and a blind key in pairs, while measuring the
response time for generating the key pair Tc(Mi).
Step 4: Selected members compute the group key using T*.
Step 5: When the group key has been generated, it is sent to all members.

Fig. 11. Merge Protocol

6. Experimental Comparisons
In this section the proposed protocol (ETGDH) is compared to other contributory group key
agreement schemes including TGDH, GDH, BD, and STR.

A cluster of 13 SUN Ultra Spac Stations running Sun Solaris was used for the experiments.
The group members were uniformly distributed across the thirteen machines. Therefore, 1-60

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 2, April 2009 189

processes could be run on a single machine and the response times of computing a group key
could be measured. Each process running on a single machine acts like a single member in
group key generation. The tests designed were run on the testbed in order to measure the
average response times of computing a group key and the communication overhead of sending
and delivering messages under the selected protocols, which included GDH (Group
Diffie-Hellman) [2], BD (Burmester and Desmedt) [9], STR (Skinny Tree) [10], and TGDH
(Tree-based Group Diffie-Hellman) [4].

Fig. 12. Merge Operation. A) The smaller tree Ts1, B) The larger tree Ts2, C) Updated Tree T*

6.1 Join Operation
Fig. 13 shows that BD and GDH are inefficient, because the join operation exhibits an
increasing overhead (i.e., communication and computation costs) with respect to an increasing
group size. On the other hand, ETGDH, TGDH, and STR are efficient, because they use a
divide-and-conquer algorithm to compute the group key. ETGDH is the most efficient, scaling
logarithmically with respect to the number of exponentiations. Both TGDH and STR use a
binary tree to compute the GK. ETGDH involves 2n – 2 more communication messages than

<0,0>

<1,0>

M1 M2

<1,1>

A merge node

<0,0>

<1,0>

M3 M4

The updated Tree T*

<1,1>

M1

<2,1>

M2

<2,0><2,0> <2,1>

<3,1><3,0> <3,2>

M5

M3

<0,0>

<1,0> <1,1>

<2,1>

M4

M5

A merge node

<2,0>

(A)
(B)

(C)

190 Hong: Secure and Efficient Tree-based Group Diffie-Hellman Protocol

any other protocol. However, the relatively large communication rate does not adversely affect
the performance in computing the GK, because it takes a maximum of 20 micro-seconds to
exchange messages between group members in GK generation. Therefore, ETGDH is more
efficient than the other tree-based GK computation protocols.

Fig. 13. Comparison of Join Cost: Group Size versus Time

6.2 Leave operation
Fig. 14 shows the computational delay of a random member leaving a group of size n (= 10, 20,
30, 40, 50, and 60). The leave cost depends on the number of remaining members, so it does
not matter how many members remain. Thus, the leave cost is almost the same as the join cost.
However, the computation cost of STR for a leave event depends on the location of the leaving
member in the key generation tree. Therefore, the efficiency of STR in terms of the leave cost
is lower than the efficiency in terms of the join cost.

6.3 Partition operation
 Fig. 15 shows the partition operation results. Whenever there is a network fault, the group is
divided into several subgroups. The group can be divided and their sub group keys must be
recomputed. If a network fault is detected in ETGDH and TGDH, each remaining member
updates its tree by deleting all partitioned members as well as their respective parent nodes.
Each subgroup controller then computes all keys on its key-path as far up the tree as possible.
Then, each subgroup controller broadcasts the set of new blind keys. Upon receiving a
broadcast, each member checks whether the message contains a new set of blind keys.

For BD and GDH, the location of the partitioning members is irrelevant to the overall
performance. However, the partitioning members’ location is important in ETGDH, STR and
TGDH. Fig. 15 shows that the overhead of TGDH while managing the tree structure increases
until half of the group has been partitioned, after which it decreases. Since the group was
evenly divided into two groups in TGDH, the maintenance cost of the tree was maximized but
more messages were required. On the other hand, the cost of BD and GDH decreases linearly,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 2, April 2009 191

because it was inversely proportional to the number of remaining group members. If the
number of remaining members is small, then the overhead for all protocols other than TGDH
and ETGDH is large.

Fig. 14. Comparison of Leave Cost: Group Size versus Time

Fig. 15. Comparison of Partition Cost: Group Size versus Time

6.4 Merge operation
Fig. 16 shows the merge operation results. After recovering from a network fault, there is a

192 Hong: Secure and Efficient Tree-based Group Diffie-Hellman Protocol

merge operation. The overall performance of all protocols other than GDH is good. The
performance of GDH strongly depends on the current group size. In addition, it involves n +
2m + 1 exponentiations and n + 2m + 1 messages. For ETGDH and TGDH, the current group
size is irrelevant. Therefore, the performance of the tree-based protocols is almost constant.

Based on the experimental results on computational cost, ETGDH shows the best
performance, despite the relatively large number of message exchanges. ETGDH adopts a tree
structure in order to generate the GK, which is similar to TGDH. In addition, ETGDH
considers user diversity, so only approved members can join in GK generation.

Fig. 16. Comparison of Merge Cost: Group Size versus Time

6.5 Summary
To evaluate the efficiency, the communication and computation overhead of the proposed
protocol (ETGDH) were measured in terms of the total response time of generating a group
key, and then compared to existing protocols. Results show that ETGDH, which uses a queue
structure to determine high performance members, provides the highest efficiency in terms of
the response time of generating a group key, even though it involves a relatively large number
of message exchanges. Therefore, the factors which must be considered in order to improve
efficiency in group key generation include tree maintenance, diversity of computing power,
and heterogeneity of network environments. The results were obtained for a small LAN.
However, a future research direction is to determine if the communication costs in larger
networks (e.g. wide area networks) are greater than the group key generation costs, and to
develop a careful experimental design to accurately assess the overhead of the proposed
queue-based protocol.

7. Conclusion
Group key generation is an important issue in group key management. Several attempts to
enhance group key generation have been reported [11]. Group key management focuses on
minimizing the computational overhead of inherently expensive cryptographic operations [10].
As a result of the complexity of group key generation, group key management needs to adopt a
key tree structure in order to reduce group key generation times. Key trees have been

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 2, April 2009 193

suggested for centralized group key distribution systems in order to reduce the complexity of
key calculation [12]. One efficient group key generation protocol is TGDH [13]. The TGDH
protocol has two necessary preconditions, (a) the key tree is perfectly balanced and (b) all
members in the group have equal computing power. If the two preconditions are not satisfied
then TGDH cannot perform with an efficiency of O (log n). As mentioned earlier, the
members in a distributed computing environment can use any computing machine.
Conventional group key agreement protocols require all members to contribute to group key
generation. Consequently, it is possible for low performance members to join, which will
result in delays. To improve group key generation, (a) low performance members should not
participate in generation of the group key and (b) relatively high performance members should
be authorized to participate in calculation of the group key. The performance of each
member’s computing machine is classified as high or low.

This paper proposed an enhanced group key agreement to filter low performance members
and achieve maximum efficiency in group key generation.

References

[1] Y. Kim, A. Perrig, and G. Tsudik, “Tree-based Group Key Agreement,” ACM Transaction on
Information and System Security, ACM Press, 2004.

[2] E. Bresson, O. Chevassut, et al., “Provably authenticated group Diffie-Hellman key exchange,”
in Proceedings of the 8th ACM conference on Computer and Communications Security,
Philadelphia, PA, 2001.

[3] W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE Transactions on
Information Theory, vol. 22, pp.644-654, 1976.

[4] Y. Kim, “Group Key Agreement: Theory and Practice,” Ph.D. thesis, Dept. of Computer Science,
University of Southern California at LA, 2002.

[5] E. Cole, R. K. Krutz, et al., “Network Security Bible,” John Wiley & Sons, 2005.
[6] A. K. Lenstra and E. R. Verheul, "Selecting cryptographic key sizes,” Journal of Cryptology, vol.

14, no. 4, pp.255-293, 2001.
[7] Y. Amir and J. Stanton, “The Spread wide area group communication system,” Center of

Networking and Distributed Systems: Tech. Rep. 98-4, Johns Hopkins University, 1998.
[8] A. L. N. Fekete and A. Shvartsman, “Specifying and using a partionable group communication

service,” In ACM PODC ’97, Santa Barbara, CA, 1997.
[9] M. Burmester and Y. Desmedt, “A secure and efficient conference key distribution system,”

Advances in Cryptology - EUROCRYPT’94, 1994.
[10] Y. Kim, A. Perrig, and G. Tsudik, “Communication-efficient group key agreement,” in 17th

International Information Security Conference, 2001.
[11] Y. Amir, Y. Kim, C. Nita-Rotaru, and, G. Tsudik, “On the Performance of Group Key

Agreement Protocols,” ACM transactions on information and system security, vol. 7, no. 3,
pp.457- 488, 2004.

[12] D. Wallner, E. Harder, et al., “Key management for multicast: Issues and architecture,” in
MILCOM 98, 1998.

[13] Y. Kim, A. Perrig, et al., “Simple and fault-tolerant key agreement for dynamic collaborative
groups,” in 7th ACM Conference on Computer and Communications Security, 2000.

194 Hong: Secure and Efficient Tree-based Group Diffie-Hellman Protocol

Sunghyuck Hong received his B.A. degree from Myongji University, Korea in
1995. After graduation, he worked at Hyosung Inc. in Seoul, Korea from 1995 to 1999
as a computer programmer and ERP consultant. He has a Ph.D. degree from Texas
Tech University in August, 2007, major in Computer Science. Currently, he works at
International Affairs in Texas Tech University as a senior programmer/analyst. His
current research interests include secure authentication, secure group communication,
wireless sensor networks, biometric authentication, and key management protocol.

