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Abstract 
 

Current group key agreement protocols (often tree-based) involve unnecessary delays because 
members with low-performance computer systems can join group key computation.  These 
delays are caused by the computations needed to balance a key tree after membership changes. 
An alternate approach to group key generation that reduces delays is the dynamic prioritizing 
mechanism of filtering low performance members in group key generation. This paper 
presents an efficient tree-based group key agreement protocol and the results of its 
performance evaluation.  The proposed approach to filtering of low performance members in 
group key generation is scalable and it requires less computational overhead than conventional 
tree-based protocols.   
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1. Introduction 

An Enhanced Tree-based Group Diffie-Hellman (ETGDH) protocol is proposed that 
improves the existing TGDH, a tree-based group key agreement protocol that is currently the 
most efficient such protocol. The overall efficiency of TGDH is always determined by the 
slowest member’s performance in generating a group key, because group communication 
under the TGDH protocol does not start until all members have completed generation of the 
group key. Under ETGDH, unnecessary delays are avoided, as low performance members are 
not allowed to participate in group key generation. 

2. Enhanced Tree-Based Group Diffie-Hellman 
To generate a group key efficiently, there must be a group controller. The group controller is 
the last member to join the group in the Enhanced Tree-based Group Diffie-Hellman 
(ETGDH) protocol. The newest member always plays the role of the group controller. The 
group controller is responsible for managing group key generation. He/she initiates group key 
generation for all members by sending them his/her blind key. Each member Mi selects a 
random private number ri and computes Mi = gri mod p. All members participate in group key 
generation. When the group key has been computed, the highest performance member 
computes the final group key and distributes it to all members, and then group communication 
begins. Whenever membership changes, the group key must be regenerated. The definitions 
given in Table 1 are used in the subsequent figures and equations. 

   
Table 1. Definitions 

Symbol Definition 
n The number of group members 
G A set of current members 
GP A set of partitioned group members 
T A key tree 
T* A modified tree after membership operations 
Ts The sub tree of T 
Gc A group controller  
Msc A subgroup controller  
Md A leaving member 
Mi ith group member; i ∈ [1,n] 

*
pZ  Integer set; *

pZ ={1,2,…, p } 

p, g A large prime number; p ∈ *
pZ , exponentiation base; 1 < g < p and g ∈ *

pZ  
 

<l, v> vth node at level l in a tree (where 0≤v≤2l – 1) 
K<l, v> <l,v>th node’s random private key    
SK<l,v> <l,v>th node’s session key 

f(x) gx mod p  
BK<l, v> <l,v>th node’s blind (public) key,  f(K<l, v>) = g K<l, v> mod p  
Tc(Mi) ith group member’s response time for generating a key pair.  

 
Fig. 1 and Fig. 2 show a conventional tree-based group key agreement protocol used to 
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generate a group key. An example of key tree-based group key generation is shown in Fig. 2. 
Each node <l, v>’s private key and public key represent K<l, v> and BK<l, v> = gK<l, v> mod p 
respectively, where g and p are public parameters. Every member holds the secret keys on the 
key path. For simplicity, each member knows the blind keys on the key path. The blind keys 
are the shaded nodes in Fig. 2.  

 

 
Fig. 1. Node <l,v>’s Session Key Generation  

 

 
Fig. 2. Binary Key Tree 

 
The random Session Key (SK) of the non-leaf node <l, v> in Fig. 1 is generated by:  

 
SK<l, v> = (BK<l+1, 2v>)K<l+1, 2v+1> = (gK<l+1, 2v>)K<l+1, 2v+1> mod p                (1) 
SK<l, v> = (BK<l+1, 2v+1>)K<l+1, 2v> = (gK<l+1, 2v+1>)K<l+1, 2v> mod p                (2) 

SK<l, v> = gK<l+1, 2v>K<l+1, 2v+1> mod p                                  (3) 
 
Eq. (1) and Eq. (2) contain two exponents, which are the blind keys of node <l+1,2v> and 
node <l+1,2v+1> in Fig. 1. Node <l,v>’s session key is given by Eq. (3). Each member in a 
leaf node randomly selects a private key and generates a blind key. Fig. 2 shows a tree for six 
members, where M1 can compute SK<2,0>, SK<1,0>, SK<0,0> using the blind keys BK<3,0>, BK<3,1>, 
BK<2,1>, and BK<1,1> [1]. 
 

The final group key G is computed as follows: 
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Note that the group key G in Eq. (4) is computed in terms of all the blind keys on the key 

path in the key generation tree. The Group Diffie-Hellman (GDH) key agreement protocol [2] 
is an extension of the Diffie-Hellman (DH) key exchange protocol [3].  

3. Group Key Secrecy and Security Model 
Group key (GK) management is concerned with efficient generation of a GK in order to 
achieve and maintain secure communication.  This process has four security requirements: (1) 
GK secrecy, (2) Backward secrecy, (3) Forward secrecy, and (4) Key independence [4].  Each 
of these security requirements are defined as follows:   

 Assume that a GK is changed m times and the sequence of GKs is given by {K0, K1,…, Km-1, 
Km}. 
1. GK Secrecy guarantees that it is computationally infeasible for a passive adversary to 

discover any GK, when Ki ∈ K for all i. 
2. Forward Secrecy guarantees that a passive adversary who knows a contiguous subset of 

old GKs (for example {K0,K1,…,Ki}) cannot discover any subsequent GK, Kj when j > i for 
all i and j 

3. Backward Secrecy guarantees that a passive adversary who knows a contiguous subset of 
GKs (for example {Ki,Ki+1,…,Kj}) cannot discover a preceding GK, Kl when l < i < j for all 
l, j, k, 

4. Key Independence guarantees that a passive adversary who knows a proper subset of GKs 
Ksubset ⊂ K cannot discover any other GK, when Ki ∈ (K – Ksubset). 

Before examining GK secrecy, the possible types of security attacks must be defined.  
There are two types of security attacks in group communication: active attacks and passive 

attacks.  Active attacks involve injecting, deleting, delaying, and modifying protocol messages.  
Protecting against active attacks is beyond the scope of this paper.  The security of network 
protocols such as Public Key Infrastructure (PKI) is assumed and we focus on protection from 
passive attacks.   

When considering passive attacks, eavesdropping is the most significant threat.  Efficient 
generation of GKs that meet the aforementioned four security requirements addresses the 
threat of eavesdropping.  Secure GKs prevent attackers from discovering the GK and using it 
to decrypt the message. 

A GK is a common secret key, which means that one key can encrypt/decrypt messages 
during communication, (i.e., it is a symmetric cipher). For symmetric ciphers, the most well 
known passive attack is the brute-force attack [5], which is the process of enumerating all 
possible keys until the proper key needed to decrypt a given cipher text into the correct plain 
text is found. All symmetric encryption algorithms will eventually fall to brute-force attacks if 
there is enough time.   

In a brute-force attack, the expected number of trials needed to find the correct key is equal 
to half the size of the key space (i.e., the expected number of trials is the average of the best- 
and worst-case number of trials needed to find the right key). Symmetric ciphers with keys of 
64 bits or less are vulnerable to brute force attacks [5]. Therefore, the key size must be large 
enough to prevent such an attack on symmetric ciphers.  If the number of possible keys is 
enough to delay a brute-force attack, then the algorithm is secure [5].  GKs of 1,024 bits are 
secure with current technology [6].  A brute-force attack needs 21,024/2 attempts to find the GK; 
such an approach is computationally infeasible. A cryptographic protocol is provably secure if 
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it can be shown to be as difficult to break as solving a well-known number-theoretic problem, 
such as the computation of discrete logarithms. 

Another important security requirement of protecting against passive attacks via GK secrecy 
is maintaining key freshness. Whenever the group membership changes the GK is 
collaboratively regenerated. A GK is always fresh after a membership change; there is no 
chance to use an old key.  In addition, GKs can be changed at regular or irregular intervals in 
order to ensure freshness. The fresher a GK, the more secure it is.  
 Fig. 3 shows an overview of a secure group communication protocol that relies on the 
Secure Spread Library tool key [7]. The Secure Spread Library  is a group communication 
toolkit for wide and local area networks; it provides all the services of traditional group 
communication systems, including a multicast of messages to a group, network failure 
detection, and group membership services [8]. In addition, the Spread provides the members’ 
login status to all members, so they can update the group key generation tree structure used to 
generate the group key. After member authentication, secure group communication is ready to 
start, and this must have a group key agreement protocol that can generate a group key in order 
to protect message integration.  
 

 
Fig. 3. Overview of Secure Group Communication 

 
The principle of the ETGDH protocol relies on the premise that members in distributed 

computing do not have equal computing power. In other words, this algorithm admits diversity 
in member performance. Thus, during group communication, different roles should be 
allocated to the proper members in the group. This depends on each member’s computing 
performance, because a higher level of the group key generation tree consumes more 
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computing time than lower levels.  
Fig. 4 shows filtering of low performance members in the key tree. Leaf nodes represent 

members (M1, M2, M3, M4, M5, M6, M7, and M8). The sibling nodes in the tree are <M1, M2>, 
<M3, M4>, <M5, M6>, and <M7, M8>. Each member Mi generates a secret key K<l, v> as well as a 
blind key BK<l, v>= gK<l, v> mod p. In addition, the response time for generating the keys is 
measured, and then each member starts using Diffie-Hellman key exchange. For example, M1 
and M2 exchange M1 (gK<3,0> mod p) and M2 (gK<3,1> mod p) in order to generate the sub-group 
key gK<3,0>K<3,1> mod p. 

 
Table 2. Key Generation 

Key node Member Key Computation Process 
<3,0> M1 gK<3,0> mod p 
<3,1> M2 g K<3,1> mod p 
<3,2> M3 g K<3,2> mod p 
<3,3> M4 g K<3,3> mod p 
<3,4> M5 g K<3,4> mod p 
<3,5> M6 g K<3,5> mod p 
<3,6> M7 g K<3,6> mod p 
<3,7> M8 g K<3,7> mod p 
<2,0> M2 g<3,0><3,1> = 3,0 3,1 mod

K K
g p< > < >  

<2,1> M4 g<3,2><3,3> = 3,2 3,3 mod
K K

g p< > < >  

<2,2> M6 g<3,4><3,5> = 3,4 3,5 mod
K K

g p< > < >  

<2,3> M8 g<3,6><3,7> = 3,6 3,7 mod
K K

g p< > < >  

<1,0> M4 g<2,0><2,1> = 
3,0 3,1 3,2 3,3

mod
K K K Kg gg p
< > < > < > < >

 

<1,1> M8 g<2,2><2,3> = 
3,4 3,5 3,6 3,7

mod
K K K Kg gg p
< > < > < > < >

 

<0,0> M8 g<1,0><1,1> = 
3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7

mod
K K K K K K K Kg g g gg gg p
< > < > < > < > < > < > < > < >

 
 
 
 
 
 
 
 
 
 

 
 
 

 
Fig. 4. Key Generation Tree 

 
After completing the leaf level computation, a session key in the next level is ready to be 

generated. The group controller (who was the last member to join) determines which members 
join in the next level by comparing each member’s response times, Tc(Mi). Assuming the 
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higher performance members are M2, M4, M6, and M8, they advance to the next key generation 
until the final group key is obtained. The rest of the members wait until this has been 
completed. The next subgroup key pairs are < M2, M4> and < M6, M8>. The higher 
performance members regenerate the upper level session key. Finally, the highest performance 
member M8 (See Table 2) generates the final group key and distributes it to the rest of the 
members. Table 2 indicates that low performance members do not participate in generation of 
the group key. 

4. Protocol Requirements 
The Enhanced Tree-based Group Diffie-Hellman (ETGDH) functions include member 
authentication, group key generation, and distribution of the group key to all members. The 
prototyping of ETGDH considers secure communication and algorithm efficiency during 
normal operations. Most experiments consist of measuring the time required for member 
authentication and group key generation.  

Membership operations of the ETGDH protocol include join, leave, merge, and partition, 
based on the following preliminary requirements: 
• All members must use their own computers to communicate with others.  
• All members must have their public keys (certificates) with a MAC address for member 

authentication.   
• The last member to login becomes the group controller and then starts group key 

generation by sending his/her blind key to current members. 
• In case the group controller leaves, the second latest member becomes the group 

controller.  
• Only approved members contribute an equal share to the group key. Non-authorized 

members should not participate in group key generation while it is in progress.  
• Each member is required to know all blind keys in the entire key tree. 
• All members are required to generate a private key and a blind key. After the membership 

changes, they must regenerate the group key for group key secrecy.    

5. Membership Operations 

A group key agreement protocol needs to provide membership operations to cope with 
membership changes. The ETGDH includes protocols in support of the following operations: 

 Join: a new member is added to group communication 
 Leave: a member is removed from group communication 
 Partition: a subset of members is split from group communication 
 Merge: a partitioned group is merged with current group communication 

5.1 Join Protocol 
Suppose that the group size is n. The group members are M1, M2, M3,…, Mn-1, Mn for n < 100. 
Following any membership change, all members independently update the group key 
generation tree. Assuming that the underlying group communication system provides Virtual 
synchrony [8], all members correctly compute the key tree after any membership event [1]. 
The Virtual Synchrony protocol is established over the set of core members that can 
communicate with each other. This protocol provides guaranteed, in-order message delivery 
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for message streams that potentially involve one sender and multiple receivers. This guarantee 
is similar to the guarantees that TCP/IP provides for point-to-point message streams.  

If the number of members is n, then a binary key tree of height ┌log2n┐ is generated. All 
members are assigned from the leftmost to the rightmost leaf node on the tree according to the 
order of login and the last member (i.e., the group controller Gc) is assigned to the rightmost 
node <log2n, n-1 >. Fig. 5 shows the sequence of steps required for member Mj to join a group, 
where Mj is a new member who becomes the group controller (Gc).  

 
Events in the algorithms are described as follows: 

A                                                                      B 
 

• The left side A is a group and the right side B is a group controller or a member.  
• The arrow represents a control message.  
• The destination can be either A or B. 
 

Step 1: Each new member becomes a group controller (Gc) and broadcasts a request to generate the 
group key by sending his blind key. 

   Gc sends his blind key to all members to compute the keys. 

 
Step 2: Every member: 

 Updates the key tree (T*) by removing all keys on the key-path and adding a new member node 
and a new intermediate node,  

 Generates a private key and a blind key while measuring the response time of generating the key 
pair Tc(Mi), 

    Sends Tc(Mi) to Gc.  
Step 3: The group controller (Gc): 

 Determines which members will join in the next level of computing the group key by comparing 
each member’s response time Tc(Mi) (ith member, i<n) of generating the key pair.  

Step 4: Approved members join in order to compute the group key. 
Step 5: When the group key has been generated, the group key is sent to all members.   

Fig. 5. Join Protocol 
 

Fig. 6 shows an example of member M5 joining a group. The rightmost node <2,3>  in Fig. 
6A becomes a new intermediate node in the updated Tree T* in Fig. 6B. The detailed steps are 
as follows:  

1. Rename node <2,3> in Fig. 6A to <3,0> in Fig. 6B 
2. Generate a new intermediate node <2,3> and a new member node <3,1> in Fig. 6B 
3. Promote <2,3> to the parent node of <3,0> and <3,1> in Fig. 6B 
 
Since all members know BK<3,1>, approved members can compute the new group key 

K<0,0> in the updated tree T* in Fig. 6B.  

5.2 Leave protocol 
When a member leaves the group, the group key must be recomputed for group key secrecy. 
The leaving member broadcasts to all members in order to update the key tree structure. If the 
approved member leaves, Gc determines a back-up member and allows him/her to join group 
key generation. If the leaving member has a sibling node, then the sibling node is promoted to 

Group G Gc 
A blind key 
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replace the leaving member’s parent node. In this case, only approved members contribute to 
computing the group key. The major steps are shown in Fig. 7, where Md is leaving the group. 

Fig. 8 shows an example of member M3 leaving the group. The detailed steps are as 
follows:   

1. Delete node <2,2> and the intermediate node <2,3> in Fig. 8A 
2. Rename node <3,0> to <2,2> and <3,1> to <2,3> in Fig. 8B 
3. Promote node <1,1> to the parent node of <2,2> and <2,3> in Fig. 8B  

 

   
           (A)                                                                        (B)                         

Fig. 6.  Join Operation. A) Original Tree T, B) Updated Tree T*  
 
     Step 1: The leaving member (Md):  

 Broadcasts a control message to all members in order to update the key tree (T*). 
 The leaving member (Md) and all the key nodes in the path up to the root  

are removed. 

 
Step 2: The group controller (Gc): 

 Selects a new member to participate in generating the group key if the leaving  
member Md is a group key generating member. Otherwise, this is not necessary.  

Step 3: Only selected members start computing the group key using the new tree T*. 
Step 4: When the group key has been generated, the group key is sent to all members. 

   
Fig. 7. Leave Protocol 

 
(A)                                        (B) 

Fig. 8. Leave Operation. A) Original Tree T, B) Updated Tree T* 
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After updating the tree, approved members can compute the group key. Note that M3 cannot 
compute the group key, even though it knows all the blind keys, because its share is no longer 
part of the group key. 

5.3 Partition protocol 
Whenever there is a network fault, a group can be divided into several subgroups. The 
partition protocol is a multi-round protocol which runs until every approved member 
computes the new group key. If a network fault is detected, each remaining member updates 
its tree by deleting all partitioned members as well as their respective parent nodes. Each 
subgroup controller then computes all keys on its key-path as far up the tree as possible. Then, 
each subgroup controller broadcasts the set of new blind keys. Upon receiving a broadcast, 
each member checks whether the message contains a new set of blind keys. This procedure is 
iterated until all members obtain the group key. In case there is a partition protocol, a subgroup 
controller works as a group controller in the subgroup.   

Fig. 9 illustrates the partition operation. Suppose the members M1 and M2 are partitioned 
from M3, M4, and M5 in Fig. 10A. The rightmost node in each group becomes the subgroup 
controller. In Fig. 10B, the subgroup controllers M2 and M5 broadcast a request to generate the 
group key, thus, each group continues to communicate with the subgroup members using the 
group key. The major steps are shown in Fig. 9. 

 
Step 1: Every member in the subkey trees: 

 Updates the subkey tree (Ts) by removing all leaving member nodes and their parent 
nodes. 

Step 2: The subgroup controller (Msc) 
 Becomes the rightmost member of the subtree. 
 Selects members for participating in generating the group key by checking each 

member’s response time Tc(Mi) for generating the key pair. 
 Generates a new share and computes all key pairs on the key path in the subkey tree Ts. 

Step 3: Selected members start computing the group key using the updated subkey tree Ts 
Step 4: When the group key has been generated, it is sent to all members. 

 
Fig. 9. Partition Protocol 

5.4 Merge protocol 
After recovering from network failures, the subgroups can be merged into the original group. 
In the first round of the merge protocol, each subgroup controller broadcasts his/her tree 
information with all blind keys to the other subgroups. Upon receiving this message, all 
members can uniquely and independently determine the merge position of the two trees. If the 
two trees have the same height, one tree is joined to the root node (insertion node) of the other 
tree. If the trees are of a different height, the smaller tree is joined to the larger.  

The insertion node can be: 1) the rightmost smaller node (not necessarily a leaf node), if 
joining would not increase the height of the tree or 2) the root node, if joining to any other node 
would increase the height of the key tree. The rightmost member of the sub tree rooted at the 
joining location becomes the subgroup controller of the key update operation. The rightmost 
node in the updated tree T* becomes Gc and computes every key on the key-path and the 
corresponding blind key. Then, he/she broadcasts the tree with the blind keys to the other 
members. All members then have the complete set of blind keys, enabling them to compute all 
keys on their key path. The major steps are shown in Fig. 11. 
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Fig. 10. Partition Operation. A) Original Tree T, B) Subtree Ts1 and Ts2 
    

A merge example is shown in Fig. 12. The smaller tree’s merge node <0,0> in Fig. 12A and 
the larger tree’s merge node <0,0> in Fig. 12B merge into the updated tree T* in Fig. 12C. The 
group controller M5 in Fig. 12C broadcasts a request to generate a new group key. After each 
member has completed the group key, secure group communication starts.  

 
Step 1: Subgroup controller (Msc): 

 Requests subgroup controllers for merger,  
 Merges two groups and updates new tree (T*). 

Step 2: The group controller (Gc): 
 The Gc who is the rightmost leaf node in T* is automatically selected.  
 Determines the members to participate in generating the group key by checking each member’s 

response time Tc(Mi) for generating a key pair,  
Step 3: Current members compute a private key and a blind key in pairs, while measuring the 
response time for generating the key pair Tc(Mi). 
Step 4: Selected members compute the group key using T*. 
Step 5: When the group key has been generated, it is sent to all members.    

 
Fig. 11. Merge Protocol 

6. Experimental Comparisons 
In this section the proposed protocol (ETGDH) is compared to other contributory group key 
agreement schemes including TGDH, GDH, BD, and STR.  

A cluster of 13 SUN Ultra Spac Stations running Sun Solaris was used for the experiments. 
The group members were uniformly distributed across the thirteen machines. Therefore, 1-60 
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processes could be run on a single machine and the response times of computing a group key 
could be measured. Each process running on a single machine acts like a single member in 
group key generation. The tests  designed were run on the testbed in order to measure the 
average response times of computing a group key and the communication overhead of sending 
and delivering messages under the selected protocols, which included GDH (Group 
Diffie-Hellman) [2], BD (Burmester and Desmedt) [9], STR (Skinny Tree) [10], and TGDH 
(Tree-based Group Diffie-Hellman) [4].  
 

 

Fig. 12. Merge Operation. A) The smaller tree Ts1, B) The larger tree Ts2, C) Updated Tree T* 

6.1 Join Operation 
Fig. 13 shows that BD and GDH are inefficient, because the join operation exhibits an 
increasing overhead (i.e., communication and computation costs) with respect to an increasing 
group size. On the other hand, ETGDH, TGDH, and STR are efficient, because they use a 
divide-and-conquer algorithm to compute the group key. ETGDH is the most efficient, scaling 
logarithmically with respect to the number of exponentiations. Both TGDH and STR use a 
binary tree to compute the GK. ETGDH involves 2n – 2 more communication messages than 
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any other protocol. However, the relatively large communication rate does not adversely affect 
the performance in computing the GK, because it takes a maximum of 20 micro-seconds to 
exchange messages between group members in GK generation. Therefore, ETGDH is more 
efficient than the other tree-based GK computation protocols. 

 
Fig. 13. Comparison of Join Cost: Group Size versus Time 

6.2 Leave operation 
Fig. 14 shows the computational delay of a random member leaving a group of size n (= 10, 20, 
30, 40, 50, and 60). The leave cost depends on the number of remaining members, so it does 
not matter how many members remain. Thus, the leave cost is almost the same as the join cost. 
However, the computation cost of STR for a leave event depends on the location of the leaving 
member in the key generation tree. Therefore, the efficiency of STR in terms of the leave cost 
is lower than the efficiency in terms of the join cost. 

6.3 Partition operation  
 Fig. 15 shows the partition operation results. Whenever there is a network fault, the group is 
divided into several subgroups. The group can be divided and their sub group keys must be 
recomputed. If a network fault is detected in ETGDH and TGDH, each remaining member 
updates its tree by deleting all partitioned members as well as their respective parent nodes. 
Each subgroup controller then computes all keys on its key-path as far up the tree as possible. 
Then, each subgroup controller broadcasts the set of new blind keys. Upon receiving a 
broadcast, each member checks whether the message contains a new set of blind keys.  

For BD and GDH, the location of the partitioning members is irrelevant to the overall 
performance. However, the partitioning members’ location is important in ETGDH, STR and 
TGDH. Fig. 15 shows that the overhead of TGDH while managing the tree structure increases 
until half of the group has been partitioned, after which it decreases. Since the group was 
evenly divided into two groups in TGDH, the maintenance cost of the tree was maximized but 
more messages were required. On the other hand, the cost of BD and GDH decreases linearly, 
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because it was inversely proportional to the number of remaining group members. If the 
number of remaining members is small, then the overhead for all protocols other than TGDH 
and ETGDH is large.  
 

 
Fig. 14. Comparison of Leave Cost: Group Size versus Time 

 

 
Fig. 15. Comparison of Partition Cost: Group Size versus Time 

6.4 Merge operation 
Fig. 16 shows the merge operation results. After recovering from a network fault, there is a 
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merge operation. The overall performance of all protocols other than GDH is good. The 
performance of GDH strongly depends on the current group size. In addition, it involves n + 
2m + 1 exponentiations and n + 2m + 1 messages. For ETGDH and TGDH, the current group 
size is irrelevant. Therefore, the performance of the tree-based protocols is almost constant.   

Based on the experimental results on computational cost, ETGDH shows the best 
performance, despite the relatively large number of message exchanges. ETGDH adopts a tree 
structure in order to generate the GK, which is similar to TGDH. In addition, ETGDH 
considers user diversity, so only approved members can join in GK generation.  

 
Fig. 16. Comparison of Merge Cost: Group Size versus Time 

6.5 Summary  
To evaluate the efficiency, the communication and computation overhead of the proposed 
protocol (ETGDH) were measured in terms of the total response time of generating a group 
key, and then compared to existing protocols. Results show that ETGDH, which uses a queue 
structure to determine high performance members, provides the highest efficiency in terms of 
the response time of generating a group key, even though it involves a relatively large number 
of message exchanges. Therefore, the factors which must be considered in order to improve 
efficiency in group key generation include tree maintenance, diversity of computing power, 
and heterogeneity of network environments. The results were obtained for a small LAN. 
However, a future research direction is to determine if the communication costs in larger 
networks (e.g. wide area networks) are greater than the group key generation costs, and to 
develop a careful experimental design to accurately assess the overhead of the proposed 
queue-based protocol. 

7. Conclusion 
Group key generation is an important issue in group key management. Several attempts to 
enhance group key generation have been reported [11]. Group key management focuses on 
minimizing the computational overhead of inherently expensive cryptographic operations [10]. 
As a result of the complexity of group key generation, group key management needs to adopt a 
key tree structure in order to reduce group key generation times. Key trees have been 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 2, April 2009                                             193 

suggested for centralized group key distribution systems in order to reduce the complexity of 
key calculation [12]. One efficient group key generation protocol is TGDH [13]. The TGDH 
protocol has two necessary preconditions, (a) the key tree is perfectly balanced and (b) all 
members in the group have equal computing power. If the two preconditions are not satisfied 
then TGDH cannot perform with an efficiency of O (log n). As mentioned earlier, the 
members in a distributed computing environment can use any computing machine. 
Conventional group key agreement protocols require all members to contribute to group key 
generation. Consequently, it is possible for low performance members to join, which will 
result in delays. To improve group key generation, (a) low performance members should not 
participate in generation of the group key and (b) relatively high performance members should 
be authorized to participate in calculation of the group key. The performance of each 
member’s computing machine is classified as high or low.  

This paper proposed an enhanced group key agreement to filter low performance members 
and achieve maximum efficiency in group key generation.    
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