• Title/Summary/Keyword: Performance evolution

Search Result 882, Processing Time 0.035 seconds

A Study on the Ranked Bidirectional Evolutionary Structural Optimization (등급 양방향 진화적 구조 최적화에 관한 연구)

  • Lee, Yeong-Sin;Ryu, Chung-Hyeon;Myeong, Chang-Mun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1444-1451
    • /
    • 2001
  • The evolutionary structural optimization(ESO) method has been under continuous development since 1992. The bidirectional evolutionary structural optimization(BESO) method is made of additive and removal procedure. The BESO method is very useful to search the global optimum and to reduce the computational time. This paper presents the ranked bidirectional evolutionary structural optimization(R-BESO) method which adds elements based on a rank, and the performance indicator which can estimate a fully stressed model. The R-BESO method can obtain the optimum design using less iteration number than iteration number of the BESO.

A DC Motor Speed Control using Fuzzy System and Evolutionary Computation (퍼지 시스템과 진화연산을 이용한 DC 모터 속도제어)

  • Hwang, K.H.;Mun, K.J.;Lee, H.S.;Kim, H.S.;Park, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.652-654
    • /
    • 1995
  • This paper proposes a design of self-tuning fuzzy controller based on evolutionary computation. Optimal membership functions are round by using evolutionary computation. Genetic algorithms and evolution strategy are used for tuning of fuzzy membership function. A arbitrarily speed trajectories is selected to show the performance of the proposed methods. Simulation results show the good performance in the DC motor control system with the self-tuning fuzzy controller based on evolutionary computation.

  • PDF

Fatigue performance assessment of welded joints using the infrared thermography

  • Fan, J.L.;Guo, X.L.;Wu, C.W.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.4
    • /
    • pp.417-429
    • /
    • 2012
  • Taking the superficial temperature increment as the major fatigue damage indicator, the infrared thermography was used to predict fatigue parameters (fatigue strength and S-N curve) of welded joints subjected to fatigue loading with a high mean stress, showing good predictions. The fatigue damage status, related to safety evaluation, was tightly correlated with the temperature field evolution of the hot-spot zone on the specimen surface. An energetic damage model, based on the energy accumulation, was developed to evaluate the residual fatigue life of the welded specimens undergoing cyclic loading, and a good agreement was presented. It is concluded that the infrared thermography can not only well predict the fatigue behavior of welded joints, but also can play an important role in health detection of structures subjected to mechanical loading.

Multitasking Façade: How to Combine BIPV with Passive Solar Mitigation Strategies in a High-Rise Curtain Wall System

  • Betancur, Juan
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.4
    • /
    • pp.307-313
    • /
    • 2017
  • This paper outlines the processes and strategies studied and selected by the team during the design stages of the project for the incorporation of BIPV into the tower's façade. The goal was to create a system that helps reduce internal heating and cooling loads while collecting energy through photovoltaic panels located throughout the building. The process used to develop this façade system can be broken down into three stages. 1. Concept: BIPV as design catalyst for a high-rise building. 2. Optimization: Balancing BIPV and Human comfort. 3. Integration: Incorporating BIPV into a custom curtain wall design. The FKI Project clearly illustrates the evolution building enclosures from simple wall systems to high performance integrated architectural and engineering design solutions. This design process and execution of this project represent the design philosophy of our firm.

Evolution of Performance for Bootstrap EWMA Control Chart under Non-normal Process (비정규 공정하에 붓스트랩 EWMA관리도의 수행도 평가)

  • 이만웅;송서일
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.25 no.2
    • /
    • pp.50-56
    • /
    • 2002
  • In this study, we establish bootstrap control limits for EWMA chart by applying the bootstrap method, called resampling, which could not demand assumptions about pre-distribution when the process is skewed and/or the normality assumption is doubt. The results obtained in this study are summarized as follows : bootstrap EWMA control chart is developed for applying bootstrap method to EWMA chart, which is more sensitive to small shifts of process. With the purpose of eliminating a skewness of the resampling distribution, the bootstrap control limits are established by using a modified residual, and its performance is analyzed by ARL. It is shown that the bootstrap EWMA control chart developed in this study includes the properties of standard EWMA control chart that is sensitive to a small shift, and detects process in out of control more quickly than standard EWMA chart.

Wireless Connectivity flight Performance Evaluation of Unmanned Helicopters

  • Shin Low-Kok;Park Soo-Hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.139-142
    • /
    • 2006
  • Numerous simulation studies and researches have recently revealed the rapid development and evolution in the emerging area of intelligent unmanned aerial vehicle (UAV). This study aims to develop a flight performance evaluation about the wireless unmanned helicopter. The process includes the design and testing of flight hardware and software that interprets sensor data. For the unmanned helicopter used in this research, an inertial sensor that provides posture (roll, pitch and yaw angles) and a Bluetooth is used to provide wireless connection between the user's pc and the helicopter were installed in the helicopter the helicopter's pitch, roll and yaw were the communication data. The accuracy of the system was confirmed by a computer simulation. The software also has been developed to support operators and displays helicopter position and posture by graphics.

  • PDF

Pressure Control of Electro-Hydraulic Variable Displacement Pump Using Genetic Algorithms (GA를 이용한 전기유압식 가변펌프의 압력제어)

  • 안경관;현장환;조용래;오범승
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.48-55
    • /
    • 2004
  • This study presents a genetic algorithm-based method fur optimizing control parameters in the pressure control of electro-hydraulic pump with variable displacement. Genetic algorithms are general-purpose optimization methods based on natural evolution and genetics and search the optimal control parameters maximizing a measure that evaluates the performance of a system. Four control gains of the PI-PD cascade controller for an electro-hydraulic pressure control system are optimized using a genetic algorithm in the experiment. Optimized gains are confirmed by inspecting the fitness distribution which represents system performance in gain spaces. It is shown that genetic algorithm is an efficient scheme in optimizing control parameters of the pressure control of electro-hydraulic pump with variable displacement.

Assessment of three optimization techniques for calibration of watershed model

  • Birhanu, Dereje;Kim, Hyeonjun;Jang, Cheolhee;Park, Sanghyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.428-428
    • /
    • 2017
  • In this study, three optimization techniques efficiency is assessed for calibration of the GR4J model for streamflow simulation in Selmacheon, Boryeong Dam and Kyeongancheon watersheds located in South Korea. The Penman-Monteith equation is applied to estimate the potential evapotranspiration, model calibration, and validation is carried out using the readily available daily hydro-meteorological data. The Shuffled Complex Evolution-University of Arizona(SCE-UA), Uniform Adaptive Monte Carlo (UAMC), and Coupled Latin Hypercube and Rosenbrock (CLHR) optimization techniques has been used to evaluate the robustness, performance and optimized parameters of the three catchments. The result of the three algorithms performances and optimized parameters are within the recommended ranges in the tested watersheds. The SCE-UA and CLHR outputs are found to be similar both in efficiency and model parameters. However, the UAMC algorithms performances differently in the three tested watersheds.

  • PDF

A Comparison of Active Contour Algorithms in Computer-aided Detection System for Dental Cavity using X-ray Image (X선 영상 기반 치아와동 컴퓨터 보조검출 시스템에서의 동적윤곽 알고리즘 비교)

  • Kim, Dae-han;Heo, Chang-hoe;Cho, Hyun-chong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1678-1684
    • /
    • 2018
  • Dental caries is one of the most popular oral disease. The aim of automatic dental cavity detection system is helping dentist to make accurate diagnosis. It is very important to separate cavity from the teeth in the detection system. In this paper, We compared two active contour algorithms, Snake and DRLSE(Distance Regularized Level Set Evolution). To improve performance, image is selected ROI(region of interest), then applied bilateral filter, Canny edge. In order to evaluate the algorithms, we applied to 7 tooth phantoms from incisor to molar. Each teeth contains two cavities of different shape. As a result, Snake is faster than DRLSE, but Snake has limitation to compute topology of objects. DRLSE is slower but those of performance is better.

Numerical simulation of three-dimensional crack features and chloride ion transport in unsaturated and damaged mortar

  • Zhiyong Liu;Yunsheng Zhang;Jinyang Jiang;Rusheng Qian;Tongning Cao;Yuncheng Wang;Guowen Sun
    • Computers and Concrete
    • /
    • v.31 no.6
    • /
    • pp.485-499
    • /
    • 2023
  • Both damage and unsaturated conditions accelerate the transport of erosive media inside concrete. However, their combined effects have not been fully investigated. A multiscale mortar model using representative volume elements is developed, capturing the number and distribution in each phase. Afterwards, mortar damage microstructure evolution is simulated in the tensile process. Finally, the unsaturated mortar transport is predicted and analysed. The results indicate that damage significantly affects the diffusion process in the early stage, while the transport performance is weakened due to the obstruction of the nontransport phase in the later stage. The higher the saturation and the more connected pores, the faster the diffusion rate of chloride ions. Chloride ions spread around the cracks in a tree-like manner along. The model can very well predict the chloride ion transport performance of unsaturated and damaged mortar.