• Title/Summary/Keyword: Performance approach goal

Search Result 247, Processing Time 0.024 seconds

Application of Quadratic Algebraic Curve for 2D Collision-Free Path Planning and Path Space Construction

  • Namgung, Ihn
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.1
    • /
    • pp.107-117
    • /
    • 2004
  • A new algorithm for planning a collision-free path based on an algebraic curve as well as the concept of path space is developed. Robot path planning has so far been concerned with generating a single collision-free path connecting two specified points in a given robot workspace with appropriate constraints. In this paper, a novel concept of path space (PS) is introduced. A PS is a set of points that represent a connection between two points in Euclidean metric space. A geometry mapping (GM) for the systematic construction of path space is also developed. A GM based on the 2$^{nd}$ order base curve, specifically Bezier curve of order two is investigated for the construction of PS and for collision-free path planning. The Bezier curve of order two consists of three vertices that are the start, S, the goal, G, and the middle vertex. The middle vertex is used to control the shape of the curve, and the origin of the local coordinate (p, $\theta$) is set at the centre of S and G. The extreme locus of the base curve should cover the entire area of actual workspace (AWS). The area defined by the extreme locus of the path is defined as quadratic workspace (QWS). The interference of the path with obstacles creates images in the PS. The clear areas of the PS that are not mapped by obstacle images identify collision-free paths. Hence, the PS approach converts path planning in Euclidean space into a point selection problem in path space. This also makes it possible to impose additional constraints such as determining the shortest path or the safest path in the search of the collision-free path. The QWS GM algorithm is implemented on various computer systems. Simulations are carried out to measure performance of the algorithm and show the execution time in the range of 0.0008 ~ 0.0014 sec.

Design Checklist for Self-sufficient Zero Energy Solar House(ZeSH) (에너지자립형 태양열 주택의 설계 및 시공 방법 체크리스트 수립 연구)

  • Yoon Jongho;Baek Namchoon;Yu Changkyun;Kim Jongil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.416-421
    • /
    • 2005
  • Most of solar system dissemination has been focused on domestic hot water system of which utilization to a building is relatively simple and safe than solar heating system. Through the survey on a cause of solar house dissemination failure in Korea, we conclude that design integration and systematic approach method for technology application are the most important element for a successful solar house. KIER(Korea Institute of Energy Research) and Hanbat National University have started new project on a development of Zero energy Solar House, called ZeSH which can be sustained just by natural energy without the support of existing fossil fuel. This is the 1st phase research of 10 years long-term ZeSH plan which develops a low-cost and $100\%$ self sufficient ZeSH. The goal of 1st phase ZeSH research is to get a $70\%$ self sufficiency only in thermal loads. Actual demonstration house, named KIER ZeSH I was designed and constructed as a result of 1st phase research work in the end of 2002. Various innovative technologies such as super insulation, high performance window, passive and active solar systems, ventilation heat recovery system are applied and evaluated to the KIER ZeSH I. A lot of computer simulations had been conducted for the optimal design and system integration in every design steps. Considering all the results from detailed hourly computer simulation, it is expected that at least $70\%$ self-sufficiency in thermal loads which is 1st phase target value can be excessively achieved in actual demonstration house. Besides, many valuable findings from the design and analysis to construction could be established such as collaboration method among the participants, practical design and construction techniques for system integration and the others. The purpose of this paper is to introduce the main findings through the development of KIER ZeSH I project. Practical guidelines in every design step for new low- or zero- energy solar house is proposed as result.

  • PDF

A Method of Performance Improvement for AAA Authentication using Fast Handoff Scheme in Mobile IPv6 (Mobile IPv6에서 Fast Handoff기법을 이용한 AAA 인증 성능 향상 방안)

  • Kim Changnam;Mun Youngsong;Huh Eui-Nam
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.6
    • /
    • pp.566-572
    • /
    • 2004
  • In this paper, we define the secure authentication model to provide a mobile node with global roaming service and integrate the Fast Handoff scheme with our approach to minimize the service latency. By starting the AAA(Authentication, Authorization and Account) procedure with Fast Handoff simultaneously when a roaming occurs, authentication latency is reduced significantly and provision of fast and seamless service is possible. The previous works such as IPsec(Internet Protocol Security), RR (Return Routability) and AAA define the procedures performed after the completion of Layer2 Handoff which leads us to study a way of providing the real time and QoS guaranteed service during this period. The proposed scheme is for this goal and when appling it to roaming environment it shows the cost reduction up to 55% and 17% for the case of the MN receiving the FBACK and not respectively before L2 Handoff occurs.

Weight Function-based Sequential Maximin Distance Design to Enhance Accuracy and Robustness of Surrogate Model (대체모델의 정확성 및 강건성 향상을 위한 가중함수 기반 순차 최소거리최대화계획)

  • Jang, Junyong;Cho, Su-Gil;Lee, Tae Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.369-374
    • /
    • 2015
  • In order to efficiently optimize the problem involving complex computer codes or computationally expensive simulation, surrogate models are widely used. Because their accuracy significantly depends on sample points, many experimental designs have been proposed. One approach is the sequential design of experiments that consider existing information of responses. In earlier research, the correlation coefficients of the kriging surrogate model are introduced as weight parameters to define the scaled distance between sample points. However, if existing information is incorrect or lacking, new sample points can be misleading. Thus, our goal in this paper is to propose a weight function derived from correlation coefficients to generate new points robustly. To verify the performance of the proposed method, several existing sequential design methods are compared for use as mathematical examples.

Utilitarian Value and its Effect on Continuance Intention in Smartphone-based Mobile Commerce (스마트폰 기반 모바일상거래의 실용적가치와 지속이용의도)

  • Choi, Su-Jeong
    • The Journal of Information Systems
    • /
    • v.25 no.3
    • /
    • pp.31-60
    • /
    • 2016
  • Purpose In 2016, the market size of mobile(m-) shopping goes beyeond more than half of a total of online shopping. People use smartphones as the main device for m-commerce. Under the circmustances, this study attempts to address why people prefer to use smartphone-based m-commerce. In other words, it is necessary to understand the main value that smartphone-based m-commerce creates. Drawing on the studies of consumption value, this study focuses on utilitarian value in predicting customers' continuance intention in the context of smartphone-based m-commerce, recognizing that utilitarian value is a key extrinsic motivation in the goal-oriented, performance-oriented shopping contexts. Furthermore, this study identifies factors affecting customers' utilitarian value from the perspective of benefits and costs, following the notion that it represents the result of evaluating a trade-off of benefits and costs caused by smartphone-based m commerce. More specifically, in this study, ubiquitous service, location-based service (LBS), transaction speed, and price utility belong to the benefit dimension, whereas technology anxiety and cognitive effort belong to the cost dimension. Design/methodology/approach To test the proposed hypotheses, the study conducted partial least squares (PLS) analysis with a total of 294 data collected on users with experience in smartphone-based m-commerce. Findings The results show that first, utilitarian value is increased by the benefits, such as ubiquitous service, transaction speed, and price utility. However, LBS has no direct effect on utilitarian value. Second, the noteworthy finding is that ubiquitous service and LBS greatly increase transaction speed. Third, technology anxiety and cognitive effort considered as the cost dimension are negatively associated with utilitarian value but their impacts on it are non-significant. Finally, the results support the argument that utilitarian value is a determinant of continuance intention. Overall, the findings imply that utilitarian value greatly depends on the peception on benefits rather than the aspect of cost in smartphone-based m-commerce. Overall, the findings offer new insight into the studies of m-commerce by considering and verifying the impacts of its benefits and costs simultaneously.

A Dynamic Path Computation Database Model in Mobile LBS System (모바일 LBS 시스템에서 동적 경로 계산 데이터베이스 모델)

  • Joo, Yong-Jin
    • Spatial Information Research
    • /
    • v.19 no.3
    • /
    • pp.43-52
    • /
    • 2011
  • Recently, interest in location-based service (LBS) which utilizes a DBMS in mobile system environment has been increasing, and it is expected to overcome the existing file-based system's limitation in advanced in-vehicle system by utilizing DBMS's advantages such as efficient storage, transaction management, modelling and spatial queries etc. In particular, the road network data corresponds to the most essential domain in a route planning system, which needs efficient management and maintenance. Accordingly, this study aims to develop an efficient graph-based geodata model for topological network data and to support dynamic path computation algorithm based on heuristic approach in mobile LBS system. To achieve this goal, we design a data model for supporting the hierarchy of network, and implement a path planning system to evaluate its performance in mobile LBS system. Last but not least, we find out that the designed path computation algorithm with hierarchical graph model reduced the number of nodes used for finding and improved the efficiency of memory.

Absolute phase identification algorithm in a white light interferometer using a cross-correlation of fringe scans (백색광 간섭기에서 간섭 무늬의 상호 상관관계 함수를 이용한 절대 위상 측정 알고리즘)

  • Kim, Jeong-Gon
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.316-326
    • /
    • 2000
  • A new signal processing algorithm for white light interferometry has been proposed and investigated theoretically. The goal of the algorithm is to determine the absolute optical path length of an interferometer with very high precision (<< one optical wavelength). The algorithm features cross-correlation of interferometer fringe scans and hypothesis testing. The hypothesis test looks for a zero order fringe peak candidate about which the cross-correlation is symmetric minimizing the uncertainty of misidentification. The shot noise limited performance of the proposed signal processing algorithm has been analyzed using computer simulations. Simulation results were extrapolated to predict the misidentification rate at Signal to-Shot noise ratio (SNR) higher than 31 dB. Root-mean-square phase error between the computer-generated zero order fringe peak and the estimated zero order fringe peak has been calculated for the changes of three different parameters (SNR, fringe scan sampling rate, coherence length of light source). Results of computer simulations showed the ability of the proposed signal processing algorithm to identify the zero order fringe peak correctly. The proposed signal processing algorithm uses a software approach, which is potentially inexpensive, simple and fast.

  • PDF

A Study on the Tensile Fracture Behavior of Glass Fiber Polyethylene Composites (GF/PE 복합재료의 인장파괴거동에 관한 연구)

  • 엄윤성;고성위
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.2
    • /
    • pp.158-163
    • /
    • 2003
  • Thermosetting matrix composites have disadvantages in terms of moulding time, repairability and manufacturing cost. Thus the high-performance thermoplastic composites to eliminate such disadvantages have been developed so far. As a result of environmental and economical concerns, there is a growing interest in the use of thermoplastic composites. However, since their mechanical properties are very sensitive to the environment such as moisture, temperature etc., those behaviors need to be studied. Particularly the temperature is a very important factor influencing the mechanical behavior of thermoplastic composites. The effect of temperature have not yet been fully quantified. Since engineering applications of reinforced composites necessitate their fracture mechanic characterization, work is in progress to investigate the fracture and related failure behavior. An approach which predicts the tensile strength was perpormed in the tensile test. The main goal of this work is to study the effect of temperature on the result of tensile test with respect to GF/PE composite. The tensile strength and failure mechanisms of GF/PE composites were investigated in the temperature range 6$0^{\circ}C$ to -5$0^{\circ}C$. The tensile strength increased as the fiber volume fraction ratio increased. The tensile strength showed the maximum at -5$0^{\circ}C$, and it tended to decrease as the temperature increased from -5$0^{\circ}C$. The major failure mechanism was classified into the fiber matrix debonding, the fiber pull-out, the delamination and the matrix deformation.

Study on the Impact of Collaboration on Business Performance in the Public Sector (공공부문에서의 협업이 업무성과에 미치는 영향에 대한 연구)

  • Lee, Hyang-Soo;Lee, Seong-Hoon
    • Journal of Digital Convergence
    • /
    • v.14 no.3
    • /
    • pp.35-43
    • /
    • 2016
  • Internal and external environment changes surrounding our society are pressing our government to solve a lot of difficult problems. These problems are more likely to be solved by a number of ministries and agencies, rather than a single ministry or agency. Thus collaboration is a necessary strategy to increase government's problem-solving skills. This study examines determinants of successful collaboration by analysing cases of local governments that solved uneasy problems covering many ministries after persistent efforts which have been controversial issues in our society. First, theoretical approach for collaboration and its matrix is examined. Second, interviews of government officers are analyzed to study collaboration cases. Finally, Strategic points of view are discussed to promote collaboration within government sectors. The results show that common goal sharing, incentives and supporting systems play important roles in inducing collaboration.

Fundamental framework toward optimal design of product platform for industrial three-axis linear-type robots

  • Sawai, Kana;Nomaguchi, Yutaka;Fujita, Kikuo
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.3
    • /
    • pp.157-164
    • /
    • 2015
  • This paper discusses an optimization-based approach for the design of a product platform for industrial three-axis linear-type robots, which are widely used for handling objects in manufacturing lines. Since the operational specifications of these robots, such as operation speed, working distance and orientation, weight and shape of loads, etc., will vary for different applications, robotic system vendors must provide various types of robots efficiently and effectively to meet a range of market needs. A promising step toward this goal is the concept of a product platform, in which several key elements are commonly used across a series of products, which can then be customized for individual requirements. However the design of a product platform is more complicated than that of each product, due to the need to optimize the design across many products. This paper proposes an optimization-based fundamental framework toward the design of a product platform for industrial three-axis linear-type robots; this framework allows the solution of a complicated design problem and builds an optimal design method of fundamental features of robot frames that are commonly used for a wide range of robots. In this formulation, some key performance metrics of the robot are estimated by a reducedorder model which is configured with beam theory. A multi-objective optimization problem is formulated to represent the trade-offs among key design parameters using a weighted-sum form for a single product. This formulation is integrated into a mini-max type optimization problem across a series of robots as an optimal design formulation for the product platform. Some case studies of optimal platform design for industrial three-axis linear-type robots are presented to demonstrate the applications of a genetic algorithm to such mathematical models.