• Title/Summary/Keyword: Performance analysis model

Search Result 10,248, Processing Time 0.035 seconds

A Method for Screening Product Design Variables for Building A Usability Model : Genetic Algorithm Approach (사용편의성 모델수립을 위한 제품 설계 변수의 선별방법 : 유전자 알고리즘 접근방법)

  • Yang, Hui-Cheol;Han, Seong-Ho
    • Journal of the Ergonomics Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.45-62
    • /
    • 2001
  • This study suggests a genetic algorithm-based partial least squares (GA-based PLS) method to select the design variables for building a usability model. The GA-based PLS uses a genetic algorithm to minimize the root-mean-squared error of a partial least square regression model. A multiple linear regression method is applied to build a usability model that contains the variables seleded by the GA-based PLS. The performance of the usability model turned out to be generally better than that of the previous usability models using other variable selection methods such as expert rating, principal component analysis, cluster analysis, and partial least squares. Furthermore, the model performance was drastically improved by supplementing the category type variables selected by the GA-based PLS in the usability model. It is recommended that the GA-based PLS be applied to the variable selection for developing a usability model.

  • PDF

Uncertainty and Sensitivity Analysis on A Biosphere Model

  • Park, Wan-Sou;Kim, Tae-Woon;Lee, Kun-Jai
    • Journal of Radiation Protection and Research
    • /
    • v.15 no.2
    • /
    • pp.101-112
    • /
    • 1990
  • For the performance assessment of the radioactive waste disposal system (repository), a biosphere model is suggested. This biosphere model is intended to calculate the annual doses to man caused by the contaminated river water for eight pathways and four radionuclides. This model can also be applied to assess the radiological effects of contaminated well water. To account for the uncertainties on the model parameter values, parameter distributions are assigned to these model parameters. Then, Monte Carlo simulation method with Latin Hypercube sampling technique is used. Also, sensitivity analysis is performed by using the Spearman rank correlation coefficients. It is found that these methods are a very useful tool to treat uncertainties and sensitivities on the model parameter values and to analyze the biosphere model. A conversion factor is proposed to calculate the annual dose rate to humans arising from a unit radionuclide concentration in river water. This conversion factor allows for the substitution of the biosphere model in a probabilistic performance assessment computer code by one single variable.

  • PDF

The Effects of Entrepreneurial Experience, Business Model Innovation and Financing on the Performance of New Ventures (벤처기업 창업자의 창업경험, 비즈니스 모델 혁신 및 자금조달이 초기 성과에 미치는 영향)

  • Jongseon Lee;Sangmoon Park
    • Asia-Pacific Journal of Business
    • /
    • v.15 no.1
    • /
    • pp.179-192
    • /
    • 2024
  • Purpose - The purpose of this study is to examine the effect of entrepreneurial experience, business model innovation and financing on new venture performance. Design/methodology/approach - This study analyzes survey data on new ventures in Korea and investigated research hypothesis by multiple regression analysis. Findings - Founders' prior startup experience have different impacts on performance depending on whether they had a successful or failed startup. Successful experience has a positive impact on early performance, while failure experience has a negative impact. Business model innovation shows a positive and significant relationship with early performance. External financing has different effects depending on the type of funding source and performance variables. VC funding is positively related to employment creation, while government R&D funding is negatively related to sales volume. Research implications or Originality - This study confirms that the impact of entrepreneurial experience on early performance varies depending on the characteristics of successful and unsuccessful entrepreneurs. It also empirically confirms that business model innovation has a significant impact on early performance. We empirically examine the relationship between various external financing sources of venture firms and early performance. Since the effects of entrepreneurial experience, business model innovation, and external financing on early stage performance may be different, entrepreneurs should consider these relationships when pursuing early stage business opportunities.

A study on multi-objective optimal design of derrick structure: Case study

  • Lee, Jae-chul;Jeong, Ji-ho;Wilson, Philip;Lee, Soon-sup;Lee, Tak-kee;Lee, Jong-Hyun;Shin, Sung-chul
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.6
    • /
    • pp.661-669
    • /
    • 2018
  • Engineering system problems consist of multi-objective optimisation and the performance analysis is generally time consuming. To optimise the system concerning its performance, many researchers perform the optimisation using an approximation model. The Response Surface Method (RSM) is usually used to predict the system performance in many research fields, but it shows prediction errors for highly nonlinear problems. To create an appropriate metamodel for marine systems, Lee (2015) compares the prediction accuracy of the approximation model, and multi-objective optimal design framework is proposed based on a confirmed approximation model. The proposed framework is composed of three parts: definition of geometry, generation of approximation model, and optimisation. The major objective of this paper is to confirm the applicability/usability of the proposed optimal design framework and evaluate the prediction accuracy based on sensitivity analysis. We have evaluated the proposed framework applicability in derrick structure optimisation considering its structural performance.

Deep Learning-based Interior Design Recognition (딥러닝 기반 실내 디자인 인식)

  • Wongyu Lee;Jihun Park;Jonghyuk Lee;Heechul Jung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.1
    • /
    • pp.47-55
    • /
    • 2024
  • We spend a lot of time in indoor space, and the space has a huge impact on our lives. Interior design plays a significant role to make an indoor space attractive and functional. However, it should consider a lot of complex elements such as color, pattern, and material etc. With the increasing demand for interior design, there is a growing need for technologies that analyze these design elements accurately and efficiently. To address this need, this study suggests a deep learning-based design analysis system. The proposed system consists of a semantic segmentation model that classifies spatial components and an image classification model that classifies attributes such as color, pattern, and material from the segmented components. Semantic segmentation model was trained using a dataset of 30000 personal indoor interior images collected for research, and during inference, the model separate the input image pixel into 34 categories. And experiments were conducted with various backbones in order to obtain the optimal performance of the deep learning model for the collected interior dataset. Finally, the model achieved good performance of 89.05% and 0.5768 in terms of accuracy and mean intersection over union (mIoU). In classification part convolutional neural network (CNN) model which has recorded high performance in other image recognition tasks was used. To improve the performance of the classification model we suggests an approach that how to handle data that has data imbalance and vulnerable to light intensity. Using our methods, we achieve satisfactory results in classifying interior design component attributes. In this paper, we propose indoor space design analysis system that automatically analyzes and classifies the attributes of indoor images using a deep learning-based model. This analysis system, used as a core module in the A.I interior recommendation service, can help users pursuing self-interior design to complete their designs more easily and efficiently.

Learning City Performance Measurement and Performance Measure Weighting Decision based on DEA Method (DEA를 활용한 성과평가 지표의 가중치 결정모형 구축 : 평생학습도시 성과평가 지표 적용 사례를 중심으로)

  • Lim, Hwan;Sohn, Myung-Ho
    • Journal of Information Technology Services
    • /
    • v.9 no.4
    • /
    • pp.109-121
    • /
    • 2010
  • Most organizations adopt their own performance measurement systems. Those organizations select performance measures to meet their goals. Organizations can give only limited description of what performance measures are. Kaplan and Norton suggest that the Balanced Scorecard (BSC) to complement the conventional performance measures. The BSC can provide management system with a comprehensive strategic vision and integrates non-financial measures with financial measures. The BSC is widely used for measuring corporate performance. This paper investigates how the BSC-based performance measures can be applied to Learning City. The Learning City's performance measures and strategy map on the basis of the BSC are suggested in this research. This paper adopt the AR(assurance region)-DEA model which could limit the range of weight on performance measures to prevent each viewpoint of BSC from having unlimited elasticity. The proposed model is based on CCR model including a property of unit invariance to use the data without normalization process.

Comparative Analysis on the Performance of NHPP Software Reliability Model with Exponential Distribution Characteristics (지수분포 특성을 갖는 NHPP 소프트웨어 신뢰성 모형의 성능 비교 분석)

  • Park, Seung-Kyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.641-648
    • /
    • 2022
  • In this study, the performance of the NHPP software reliability model with exponential distribution (Exponential Basic, Inverse Exponential, Lindley, Rayleigh) characteristics was comparatively analyzed, and based on this, the optimal reliability model was also presented. To analyze the software failure phenomenon, the failure time data collected during system operation was used, and the parameter estimation was solved by applying the maximum likelihood estimation method (MLE). Through various comparative analysis (mean square error analysis, true value predictive power analysis of average value function, strength function evaluation, and reliability evaluation applied with mission time), it was found that the Lindley model was an efficient model with the best performance. Through this study, the reliability performance of the distribution with the characteristic of the exponential form, which has no existing research case, was newly identified, and through this, basic design data that software developers could use in the initial stage can be presented.

Integer-Valued HAR(p) model with Poisson distribution for forecasting IPO volumes

  • SeongMin Yu;Eunju Hwang
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.3
    • /
    • pp.273-289
    • /
    • 2023
  • In this paper, we develop a new time series model for predicting IPO (initial public offering) data with non-negative integer value. The proposed model is based on integer-valued autoregressive (INAR) model with a Poisson thinning operator. Just as the heterogeneous autoregressive (HAR) model with daily, weekly and monthly averages in a form of cascade, the integer-valued heterogeneous autoregressive (INHAR) model is considered to reflect efficiently the long memory. The parameters of the INHAR model are estimated using the conditional least squares estimate and Yule-Walker estimate. Through simulations, bias and standard error are calculated to compare the performance of the estimates. Effects of model fitting to the Korea's IPO are evaluated using performance measures such as mean square error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE) etc. The results show that INHAR model provides better performance than traditional INAR model. The empirical analysis of the Korea's IPO indicates that our proposed model is efficient in forecasting monthly IPO volumes.

Performance Analysis and Design Optimization of Multi-Rate Spring Brake System (Multi-Rate 스프링 제동장치의 성능분석 및 최적설계)

  • Jung, Eui-Man;Won, Jun-Ho;Choi, Joo-Ho;Shim, In-Seob
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.4
    • /
    • pp.67-72
    • /
    • 2010
  • In this study, performance analysis and design optimization is carried out for a multi-rate spring brake system, which is used in a cable ride to stop the arriving passengers in safe and comfortable manner. Mathematical model for the spring is developed toward the objective of minimizing the impact at the arrival while satisfying the constraint of limited distance at the stop. Matlab code is utilized to examine parameters affecting the performance of the brake system. The results are validated by a commercial software RecurDyn. Kriging meta model is used to reduce the computational cost of the analysis. Optimization is conducted by RecurDyn, from which the design parameters are determined that minimizes the impact at the stop.

Numerical Analysis for Improvement of Cooling Performance in Nanoimprint Lithography Process (나노임프린트 공정에서의 냉각성능 개선에 대한 수치해석)

  • Lee, Ki-Yeon;Jun, Sang-Bum;Kim, Kug-Weon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.89-94
    • /
    • 2011
  • In recent years there have been considerable attentions on nanoimprint lithography (NIL) by the display device and semiconductor industry due to its potential abilities that enable cost-effective and high-throughput nanofabrication. A major disadvantage of thermal NIL is the thermal cycle, that is, heating over glass transition temperature and then cooling below it, which requires a significant amount of processing time and limits the throughput. One of the methods to overcome this disadvantage is to improve the cooling performance in NIL process. In this paper, a numerical analysis model of cooling system in thermal NIL was development by CAD/CAE program and the performance of the cooling system was analyzed by the model. The calculated temperatures of nanoimprint device were verified by the measurements. By using the analysis model, the case that the cooling material is replaced by liquid nitrogen is investigated.