In this paper, we propose a hybrid d-step predictor which is composed of an adaptive predictor and a Kalman predictor. We prove the performance limit of the proposed predictor. Simulation is conducted to examine the performance of the proposed predictor. Simulation results show that the proposed combined predictor is superior to the adaptive predictor and the Kalman predictor. Proposed predictor is used for prediction of gun tip vibration of k1 tank. The result is compared with that of conventional adaptive predictor.
The effects of personal(gender, physical growth) and environmental(communication with parent, intimacy of friendship, school performance, and satisfaction of school-life) factors on adolescent's self-esteem were examined in a samlpe of 525 first and second grades in middle school. The subdomains of the self-esteem were peer-related self, home self, teacher-related self, academic self, physical appearance self, physical competence self, personality self, and general self. T-test, Pearson's correlation, and regression were used as statistical analysis. Results were as follows. First, there was evidence of a gender difference in the level of the subsdomains of self-esteem: teacher-related, physical-appearance, physical-competence, and personality. Second, the factor which was the most powerful predictor of each subdomain of the self-esteem was as follows 1) the most powerful predictor of the peer-related self was the intimacy of friendship, 2) the most powerful predictor of the home self was the communication with parent, 3) the most powerful predictor of the teacher-related self was the satisfaction of school-life, 4) the most powerful predictor of the academic self was the school performance, 5)the most powerful predictor of the physical-appearance self, the physical competence self, and the personality self was the satisfaction of school-life, 6) the most powerful predictor of the general self was the school performance.
The Transactions of The Korean Institute of Electrical Engineers
/
v.63
no.12
/
pp.1704-1709
/
2014
In order to increase the performance of multi-core system processor architectures, the multi-thread branch predictor which speculatively fetches and allocates threads to each core should be highly accurate. In this paper, the perceptron based multi-thread branch predictor is proposed for the multi-core processor architectures. Using SPEC 2000 benchmarks as input, the trace-driven simulation has been performed for the 2 to 16-core architectures employing perceptron multi-thread branch predictor extensively. Its performance is compared with the architecture which utilizes the two-level adaptive multi-thread branch predictor.
The Transactions of the Korean Institute of Electrical Engineers D
/
v.52
no.11
/
pp.619-625
/
2003
We proposed an optimum PID controller design method of the Smith Predictor It can be applied to various processes. The real process is approximated via the second order plus time delay model (SOPTD) whose parameters are specified through a model reduction algorithm. We already proposed a new model reduction method that considered four point in the Nyquist curve to reduced the steady state error between the real process model and the reduced model using the gradient decent method and the genetic algorithms. In addition, the Smith predictor is used to compensate time delay of the real process model. In this paper, the new optimum parameter tuning algorithm for PID controller of the Smith Predictor is proposed through ITAE as performance index. The Simulation results show the validity and improvement of performance for various processes.
Conventional stride predictor is useful for predicting data values which vary by a constant value. However, when the data values of shift, multiplication, and division instructions are predicted, the stride predictor can't show the best performance. Thus, we propose predictor using stride and shift to improve predictability. The predictor using stride and shift takes advantage of shift values as well as stride values, so that the overall coverage of prediction increases.
In the case of traditional binary encoding technique, it takes long time to converge the optimal solutions and brings about complexity of the systems due to encoding and decoding procedures. However, the ROGAs (real-coded genetic algorithms) do not require these procedures, and the k-means clustering algorithm can avoid global searching space. Thus, this paper proposes a new approach by using their advantages. The proposed method constructs the multiple predictors using the optimal differences that can reveal the patterns better and properties concealed in non-stationary time series where the k-means clustering algorithm is used for data classification to each predictor, then selects the best predictor. After selecting the best predictor, the cluster centers of the predictor are tuned finely via RCGKA in secondary tuning procedure. Therefore, performance of the predictor can be more enhanced. Finally, we verifies the prediction performance of the proposed system via simulating typical time series examples.
The control process involving pure time delays presents a continuing challenge to the control system engineer. The nonlinear nature of the delay which can be introduced into the system make the use of conventional control algorithms a poor prospect. The Smith Predictor was developed to alleviate this problem. Unfortunately the quality of control achieved with the Smith Predictor is known to be sensitive to modelling errors. Only recently have researchers attempted to quantify the Smith Predictor controller's robustness to modelling errors. In several studies stability boundaries were plotted as functions of errors in parameters. But the research results address the question of performance of Smith Predictor controllers, In this paper, the Rule based Expert Systems for performance improvement of the Smith Predictor controller are developed.
Although many models have been proposed to accurately predict the response of drugs in cell lines recent years, understanding the genome related to drug response is also the key for completing oncology precision medicine. In this paper, based on the cancer cell line gene expression and the drug response data, we established a reliable and accurate drug response prediction model and found predictor genes for some drugs of interest. To this end, we first performed pre-selection of genes based on the Pearson correlation coefficient and then used ElasticNet regression model for drug response prediction and fine gene selection. To find more reliable set of predictor genes, we performed regression twice for each drug, one with IC50 and the other with area under the curve (AUC) (or activity area). For the 12 drugs we tested, the predictive performance in terms of Pearson correlation coefficient exceeded 0.6 and the highest one was 17-AAG for which Pearson correlation coefficient was 0.811 for IC50 and 0.81 for AUC. We identify common predictor genes for IC50 and AUC, with which the performance was similar to those with genes separately found for IC50 and AUC, but with much smaller number of predictor genes. By using only common predictor genes, the highest performance was AZD6244 (0.8016 for IC50, 0.7945 for AUC) with 321 predictor genes.
The Transactions of The Korean Institute of Electrical Engineers
/
v.57
no.8
/
pp.1447-1453
/
2008
In this paper, we proposed to improve performance of the design of a cascade controller with the smith-predictor structure. The parameters of controller in the inner loop are determined to minimize the integral of time multiplied by the absolute value of error (ITAE) value of performance Index. The controller of outer loop and parameters of Smith-Predictor can be obtain using reduction model. The model reduction is considered that it is the transient response and the steady-state response through the use of nyquist curve. Simulation examples are given to show the better performance of the proposed method than conventional methods.
Speculative execution for improving instruction-level parallelism is widely used in high-performance processors. In the speculative execution technique, the most important factor is the accuracy of branch predictor. Unfortunately, complex branch predictors for improving the accuracy can cause serious thermal problems in 3D multicore processors. Thermal problems have negative impact on the processor performance. This paper analyzes two methods to solve the thermal problems in the branch predictor of 3D multi-core processors. First method is dynamic thermal management which turns off the execution of the branch predictor when the temperature of the branch predictor exceeds the threshold. Second method is thermal-aware branch predictor placement policy by considering each layer's temperature in 3D multi-core processors. According to our evaluation, the branch predictor placement policy shows that average temperature is $87.69^{\circ}C$, and average maximum temperature gradient is $11.17^{\circ}C$. And, dynamic thermal management shows that average temperature is $89.64^{\circ}C$ and average maximum temperature gradient is $17.62^{\circ}C$. Proposed branch predictor placement policy has superior thermal efficiency than the dynamic thermal management. In the perspective of performance, the proposed branch predictor placement policy degrades the performance by 3.61%, while the dynamic thermal management degrades the performance by 27.66%.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.