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Introduction

Cancer is one of main causes of death worldwide. Anti-cancer drug therapy is an import-
ant part of cancer treatment and an effective use of them can prolong patient’s survival. 
According to many clinical data, patients with the same cancer have quite different re-
sponse to the same treatment or the same drugs due to genomic specificity. Recently, tar-
geted anti-cancer therapy [1,2] considering gene-specific effects has been proposed as a 
new cancer therapy. In order to develop specific targeted therapy for cancer patients in 
clinical treatment, many clinical trials are required. However, there are many obstacles 
such as sample limitations, complicated operations, high environmental requirements, 
and high cost, which far from meeting the demand. 

With the rapid development of artificial intelligence, many machine learning based 

Although many models have been proposed to accurately predict the response of drugs in 
cell lines recent years, understanding the genome related to drug response is also the key 
for completing oncology precision medicine. In this paper, based on the cancer cell line 
gene expression and the drug response data, we established a reliable and accurate drug 
response prediction model and found predictor genes for some drugs of interest. To this 
end, we first performed pre-selection of genes based on the Pearson correlation coefficient 
and then used ElasticNet regression model for drug response prediction and fine gene se-
lection. To find more reliable set of predictor genes, we performed regression twice for each 
drug, one with IC50 and the other with area under the curve (AUC) (or activity area). For the 
12 drugs we tested, the predictive performance in terms of Pearson correlation coefficient 
exceeded 0.6 and the highest one was 17-AAG for which Pearson correlation coefficient 
was 0.811 for IC50 and 0.81 for AUC. We identify common predictor genes for IC50 and AUC, 
with which the performance was similar to those with genes separately found for IC50 and 
AUC, but with much smaller number of predictor genes. By using only common predictor 
genes, the highest performance was AZD6244 (0.8016 for IC50, 0.7945 for AUC) with 321 
predictor genes.

Keywords: cell line gene expression data, drug response prediction, machine learning, pre-
dictor genes



drug response prediction models were proposed utilizing genomic 
information and anti-cancer drug response data. In 2011. Riddick 
et al. [3] used the random forest algorithm to establish a regression 
model of drug response, and successfully predicted the drug re-
sponse of 19 breast cancer and seven glioma cell lines, which was 
advanced to other methods such as based on differential gene ex-
pression. In 2014, Geeleher et al. [4] used Ridge regression based 
on baseline gene expression levels and in vitro drug sensitivity in 
cell lines to establish a regression model and used it to predict clin-
ical drug response. On the other hand, some studies have shown 
that the structural similarity between drugs may have similar re-
sponse to cancer cell lines that have similar gene expression profile 
[5-7]. Specifically, Shivakumar and Krauthammer [8] reported 
that the similarity between drugs is useful to predict the drug re-
sponse. Based on this research background, we designed an im-
proved drug response prediction model based on cancer genomics 
data and explored the predictor genes possibly related to the drug 
response. 

Methods

Data
The data used in this work is from Genomics of Drug Sensitivity 
in Cancer (GDSC) [9] which was developed by the Sanger Re-
search Institute in the United Kingdom. We considered 12 drugs 
and gene expression data for 1,000 human cancer cell lines. The 
drug response indicators used were the half maximal inhibitory 
concentration (IC50) and the area under the curve (AUC) [10]. 
The former is the concentration at which the compound reaches 
50% reduction in cell viability and the latter is the area under the 
fitted dose response curve. Biologically, the smaller the IC50 and 
AUC, the greater the response of the cancer cells to the drug.

Method
Based on the gene expression data of the cancer cell lines and the 
two types of response indicators, we used a machine learning algo-
rithm to construct a drug response prediction model. We first 
pre-selected genes based on the p-value of Pearson correlation co-
efficients [11] and then used ElasticNet to predict drug response 
and to further select the predictor genes among the pre-selected 
ones. Specifically, we performed ElasticNet regression separately on 
the two response values, from which common predictor genes were 
identified. These common genes were used again to predict drug 
response hoping that the prediction performance is better than, or 
at least similar to, those obtained separately for the two response in-
dicators. To confirm biological significance of predictor genes, we 
provide heatmap and gene ontology analysis results. Fig. 1 shows 

the entire experimental workflow.

Preprocessing 
Before processing the data, we took logarithm on IC50 and normal-
ized the cell line gene expression data using the robust multichip 
average [12].

Feature selection based on Pearson correlation coefficient
For some drugs, there are thousands of genes in the gene expres-
sion data, but not many genes have strong correlation with the 
drug responses. Therefore, it is very important to pre-select the 
relevant genes first. Although ElasticNet has capability for gene se-
lection, it is subject to data dependency and/or batch effect and, 
sometimes, it ignores genes that are really important to predict 
drug responses. In this paper, to overcome such problem, we used 
two-step gene selection, where we first used the Pearson correla-
tion coefficient to pre-select genes and then applied ElasticNet to 
fine select the predictor genes. In particular, we used p-value of 
Pearson correlation coefficient between the drug response and the 
expression of each gene, with which genes with p =  0.05 or less 
were selected in the first feature selection.

ElasticNet-based feature selection and drug response prediction 
ElasticNet [13] is a linear regression model trained with both ℓ1 
and ℓ2 regularization. It is useful when there are so many features 
that are correlated with one another. In our data, the number of 
features (genes) is much larger than the number of samples and 
the prediction might be subject to overfit. Hence, to appropriately 
select genes and to suppress generalization error, we used Elastic-
Net to predict the drug response. The ElasticNet was selected 
based on the preliminary experiments where we compared Elastic-
Net with two well-known models, SVR [14] and Xgboost [15]. 
The former can be configured to a non-linear regressor by using 
various kernel functions and we used radial basis function kernel 
and the latter is an improved version of decision tree based gradi-
ent boosting algorithm. The two algorithms were shown to per-
form good for many applications, while, according to our prelimi-
nary experiments, they seem to have higher overfit than ElasticNet 
as the numbers of predictor genes that are common for the two re-
sponse indicators were smaller than that for the ElasticNet. Fig. 2 
summarizes the comparison for the 12 drugs in terms of Pearson 
correlation coefficients between the predicted IC50 and the mea-
sured ones.
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Fig. 1. Experimental workflow. GDSC, Genomics of Drug Sensitivity in Cancer; AUC, area under the curve.
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Results 

Prediction of IC50 and AUC
In the first experiment, we predict the two drug response indica-
tors, IC50 and AUC separately. In ElasticNet, there are two key hy-
per parameters, a.k.a. the penalty weight α and the relative weight 
of ℓ1 penalty λ, where α is an arbitrary positive real while 0 ≤  λ ≤  1. 
λ =  0 corresponds to the Ridge regression, where we have only ℓ2 
penalty while λ = 1 corresponds to LASSO regression where we 
have ℓ1 penalty only. These two hyper parameters must be opti-
mized to achieve the best performance. To this end, we performed 
grid search for a set of combinations (α, λ). Through this, the best 
performance for drug response prediction were obtained for the 
12 drugs as summarized in Table 1.

For all the 12 drugs, the correlation coefficient between the esti-
mated IC50 and the true ones were higher than 0.65, where three of 
them were reached 0.8, e.g., 0.823 for AZD6244, 0.819 for Nut-
lin-3a and 0.811 for 17-AAG. Similar performances were also ob-
served for AUC, where 17-AAG and nilotinib showed correlation 
coefficient exceeding 0.8. The results seem to be statistically signif-
icant as the p-value for the correlation coefficient of each drug was 
less than 0.01. 

Of note, not only the number of genes to obtain the optimal 
predictive performance were quite different for each drug but also 
the gene sets for the two response indicators of the same drugs 
were only partly overlapped. The latter suggest us that there might 
exist dependency on the response indicators and it would be inter-
esting to check the prediction performance using the common 
predictors. Hopefully, they will be more reliable predictors of the 
practical drug responses.

Drug response prediction based on common predictor genes 
In the previous experiments, we found the predictor genes sepa-
rately for the two response indicators and it is also interesting to 
evaluate the performance when using only common genes. It 
could be a more stable group of predictor genes for drug response. 
To find the predictor genes that are commonly effective in the two 
response indicators, the relative weights of the ℓ1 and ℓ2 of the 
ElasticNet were fixed to 0.5. Then we adjusted α to make the num-
ber of selected genes for the two response indicators are similar to 
each other and then took the intersection of them to obtain the 
common predictors to be used for the drug response prediction. 
The results are summarized in Supplementary Fig. 1 and the scat-
ter plots of the predicted versus the true responses were shown in 
Supplementary Fig. 2 for IC50 and 3 for AUC. 

As the number of common genes increases, the predictive per-
formance for each response indicators changed similarly, but it is 
confirmed that the performances were saturated or slightly de-
creased after reach the peak. According to the trend of the predic-
tion accuracy curve, we found the points at which the performance 
was the best for both the drug response indicators simultaneously. 
The results are summarized in Table 2, where the Pearson correla-
tion coefficients for IC50 and AUC of six drugs were higher than 
0.7 only with 200 predictor genes. Comparing with the results in 
Table 1 for separate predictors for each response indicator, it can 
conclude that even with only those common predictor genes, one 
can have similar predictive performance suggesting that these 
genes are more reliable predictors on the two response indicators 
and are closely related to the underlying biological mechanism 
that governs the drug response. For comparison, we provided the 
performance of the drug responses in the literature for the same 
GDSC dataset in the last column of Table 2. 

Table 1. Comparisons of the PCC between the estimated response and the true value for the 12 drugs in GDSC

Drug name
Predict IC50 Predict AUC

No. of features PCC No. of features PCC
17-AAG 566 0.811 520 0.81
AZD-0530 262 0.612 214 0.702
AZD6244 570 0.823 551 0.792
Erlotinib 253 0.603 222 0.60
Lapatinib 261 0.698 213 0.625
Nilotinib 475 0.782 340 0.839
Nutlin-3a 475 0.819 310 0.783
PD-0325901 570 0.775 520 0.742
PD-0332991 527 0.743 432 0.671
PHA-665752 224 0.635 155 0.522
PLX4720 499 0.715 348 0.705
Sorafenib 297 0.619 248 0.647

PCC, Pearson’s correlation coefficient; GDSC, Genomics of Drug Sensitivity in Cancer; AUC, area under the curve.
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GSDC data set also provides binary indicator of drug response, 
with which the cell lines are labelled as either “sensitive (S)” or “re-
sistant (R)” to a specific drug. And it would be interesting if the 
two groups show non-negligible difference in the expression of the 
predictor genes or not. Fig. 3 shows the heatmap for the predictor 
genes for four drugs, where we can identify the differences in their 
expressions between the two group and can qualitatively judge the 
effectiveness of the predictor genes we found. The heatmap analy-
sis [16] shows that the predictor genes can also distinguish the 
drug sensitivity of cell lines to a certain extent, even though it is 
not our focus in this work. Rather, it would be more interesting to 
check what biological processes these genes are involved in re-
sponse to a certain drug treatment.

Notes on biological implication of the predictor genes 
To show the biological implication of the drug response, we used 
Metascape [17] to perform gene enrichment analysis. The predic-
tor genes for the 12 drugs were listed in Supplementary Table 1 
and the results of gene enrichment analysis for the 12 drugs are 
shown in Supplementary Table 2. Through the enrichment analy-
sis of predictor genes, we found various pathways that were mostly 
related to cancer, such as cell proliferation and developmental pro-
cess. For example, the negative regulation of cell population prolif-
eration (GO:0008285) is a process that stops, prevents, or reduces 
the rate or extent of cell proliferation [18]. If predictor genes of 
drug found by machine learning are in this pathway, this drug may 
be effective for cancer. 

Of note, AZD6244 is an inhibitor of the MAPK cascade [19]. 
The predictor genes we found were confirmed to be related to the 
regulation of the MAPK cascade through the enrichment analysis. 
Nutlin-3a is known to be an inhibitor of the MDM2-p53 (TP53) 

interaction [20]. The first significant pathway of the predictor 
genes appeared to be the p53 downstream pathway. It can be seen 
that some genes that are important to predict drug response are re-
lated to the mechanism of drug action. For example, of NQO1 
found to be one of the predictor genes of 17-AAG, the overexpres-
sion was known to increase the sensitivity to the drug 17-AAG 
[21]. Among the predictor genes of Nutlin-3a, the regulation of 
HIPK2 determines the response of tumor cells to the p53 activat-
ing drug Nutlin-3a [22]. platelet-derived growth factor receptor A, 
one of the predictor genes of PD-0332991, is known to play an im-
portant role in cell signaling pathways that affect cell growth and 
differentiation and are associated with an array of clinically signifi-
cant neoplasms [23]. For other drugs, it may be a new mechanism 
of action for drugs which is not yet known.

Discussion

Although the model proposed in this study shows good predictive 
performance for GDSC, there are still some limitations. First, the 
characteristic of cancer cell line may be quite different from the in 
vivo cancers and it should be verified whether this will be effective 
in clinical trial. Second, we perform drugs response prediction 
mainly based on gene expression data. While, the response of 
drugs is not only related to gene expression levels, but also to 
structural variations such as gene mutations. Therefore, more 
study is required to utilize such information and integrate them 
into the model to improve the predictive power. 

Cancer is one of the leading causes of death worldwide. If one 
can find a new treatment by accurately predicting drug response, 
the probability of recovery will also be increased. Although there 
are still huddles to overcome in drug response prediction, advanc-

Table 2. Comparisons of the PCC of the predicted IC50 and AUC with those reported in literature [6]

Drug name No. of features PCC of the predict IC50 PCC of the predict AUC Existing prediction results of IC50 [6]
17-AAG 260 0.795 0.785 -
AZD-0530 80 0.547 0.591 0.58
AZD6244 321 0.8016 0.7945 0.6
Erlotinib 43 0.505 0.562 0.590
Lapatinib 229 0.588 0.61 0.585
Nilotinib 184 0.745 0.799 -
Nutlin-3a 198 0.764 0.742 -
PD-0325901 234 0.742 0.728 0.8
PD-0332991 195 0.707 0.688 -
PHA-665752 48 0.468 0.359 0.35
PLX4720 171 0.643 0.654 0.57
Sorafenib 244 0.595 0.583 0.38

The results show that the proposed method performs better for most of the drugs we tested than other methods. 
PCC, Pearson’s correlation coefficient; AUC, area under the curve.
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es in machine learning techniques will make it possible to introduce 
new ideas for drug response prediction that can provide accurate 
drug treatments and make it practical for clinicians and non-experts.
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