• Title/Summary/Keyword: Performance Modeling

Search Result 5,421, Processing Time 0.038 seconds

On the modeling methods of small-scale piezoelectric wind energy harvesting

  • Zhao, Liya;Yang, Yaowen
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.67-90
    • /
    • 2017
  • The interdisciplinary research area of small scale energy harvesting has attracted tremendous interests in the past decades, with a goal of ultimately realizing self-powered electronic systems. Among the various available ambient energy sources which can be converted into electricity, wind energy is a most promising and ubiquitous source in both outdoor and indoor environments. Significant research outcomes have been produced on small scale wind energy harvesting in the literature, mostly based on piezoelectric conversion. Especially, modeling methods of wind energy harvesting techniques plays a greatly important role in accurate performance evaluations as well as efficient parameter optimizations. The purpose of this paper is to present a guideline on the modeling methods of small-scale wind energy harvesters. The mechanisms and characteristics of different types of aeroelastic instabilities are presented first, including the vortex-induced vibration, galloping, flutter, wake galloping and turbulence-induced vibration. Next, the modeling methods are reviewed in detail, which are classified into three categories: the mathematical modeling method, the equivalent circuit modeling method, and the computational fluid dynamics (CFD) method. This paper aims to provide useful guidance to researchers from various disciplines when they want to develop and model a multi-way coupled wind piezoelectric energy harvester.

An Analysis of Mathematical Modeling Process and Mathematical Reasoning Ability by Group Organization Method (모둠 구성에 따른 수학적 모델링 과정 수행 및 수학적 추론 능력 분석)

  • An, IhnKyoung;Oh, Youngyoul
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.22 no.4
    • /
    • pp.497-516
    • /
    • 2018
  • The purpose of this study is to compare the process of mathematical modeling in mathematical modeling class according to group organization, and to investigate whether it shows improvement in mathematical reasoning ability. A total of 24 classes with 3 mathematical modeling activities were designed to investigate the research problem. The result of this study showed that the heterogeneous groups performed better than the homogeneous groups in terms of both the performance ability of mathematical modeling and mathematical reasoning ability. This study implies that, with respect to group design for applying mathematical modeling in teaching mathematics, heterogeneous group design would be more efficient than homogeneous group design.

  • PDF

Core Material Design of a High Performance Rotating Machine Considering Magnetic Anisotropy

  • Ikariga Atsushi;Enokizono Masato;Shimoji Hiroyasu;Yamashiro Hirofumi
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.248-252
    • /
    • 2005
  • This paper deals with a new design method for a small-size rotating machine with high power. In order to achieve high performance, secondary excitation by Nd-Fe-B magnets and the grain oriented electrical steel sheets were selected and a new design using dual rotors is proposed. The outline of the high-performance rotating machine will be presented and the results of the finite element analysis by using this method combined with the E&SS modeling will be shown in the paper.

Development of Performance Indicators for Construction IT Tool based on BSC (건설 정보화 시스템의 BSC기반 성과지표 개발)

  • Kang, Leen-Seok;Kim, Hyeon-Seung;Moon, Hyoun-Seok;Kim, Chang-Hak;Lee, Dong-Wook
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3220-3225
    • /
    • 2011
  • Current IT Tools for construction project have been developing to satisfy the requirements of improving productivity and quality. Especially, the critical technology of the construction IT tools is the BIM (Building Information Modeling) which integrates and controls the construction information by modeling the structures in the virtual environment. Many domestic studies have been performed for developing various BIM tools and these have been demonstrated through a successful case study. However, because of the most studies focused on architecture and major construction firms, small construction firms are very difficult to utilize a BIM tool without a verification of it. To resolve these problems, this study suggests performance indicators to quantitatively assess the utilization of 4D CAD which is one of the representative BIM tools by BSC (Balanced Score Card). This performance indicator will be used as a measurement for applying IT tools in Construction Project.

  • PDF

Recent trends in advanced flight control

  • Kanai, Kimio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.24.1-24
    • /
    • 1996
  • The development of future aircraft that involves the expanded flight envelop will place increased performance requirements on the design of the flight control system. Maneuvering areas are expanding into flight envelopes characterized by significantly larger levels of modeling uncertainty than encountered in present flight control designs. Conventional flight control techniques that ignore the effects of large parameter variations, modeling uncertainties and nonlinearities, will likely produce designs with poor performance and robustness. Recent advances in modern control theories called advanced control theories, most notably the H$\_$.inf./ synthesis technique, adaptive control and neural network application, offer the promise of a design technique that can produce both high performance and robust controllers for next generation aircraft. This special lecture will survey the recent development in advanced flight control and review the possible application of advanced control theories.

  • PDF

Advanced Sorting Conditions Modeling of Frictional Force

  • Cho, Yong-Hee;Lee, Jeong-Wook;Chang, Yong-Hoon;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.439-443
    • /
    • 2004
  • In this research, we describe the sorting conditions modeling by friction force. As in any mechanism which is required to provide good dynamic performance and high accuracy, performance evaluation of optimal control. To understand friction it is necessary to investigate the topography of the sliding surfaces in contact. Any surfaces, even apparently smooth surfaces, are microscopically rough. When two surfaces come into contact, the true contact takes place only at point where asperities come together. The sorting conditions of sorting mechanism with friction force is sorting force must be equal with force can sorting one highest veneer among loaded veneer. This is just a thing being sorted veneer have friction with under veneer and this friction disturb sorting at the same time. Hence, the sorting conditions evaluation is important to sorting one veneer must get under control friction with veneer.

  • PDF

Modelling and Simulation of Rotary Compressor in Refrigerator (냉동기용 로터리 압축기의 모델링 및 시뮬레이션)

  • Park, Min-Woo;Chung, Youn-Goo;Park, Kyoung-Woo;Pak, Hi-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.39-49
    • /
    • 2000
  • This paper presents the modeling approach that can predict transient behavior of rotary compressor. Mass and energy conservation laws are applied to the control volume, real gas state equation is used to obtain thermodynamic properties of refrigerant. The valve equation is solved to analyze discharge process also. Dynamic analysis of vane and roller is carried out to gain friction work. From the above modeling, the performance of rotary compressor with radial clearance and friction loss is investigated numerically. The performance of each refrigerant is estimated, respectively by applying R12, R134a, and R290/ R600a mixture.

An Experimental Research on the Design Characteristics and Performance of the Entity-Relationship Model (개체관계 모형의 설계 특성과 성과에 관한 실험적 연구)

  • 정일주
    • The Journal of Information Technology and Database
    • /
    • v.6 no.2
    • /
    • pp.45-57
    • /
    • 1999
  • This paper makes an attempt to find a systematic portion of the database design process, especially using the Entity-Relationship(E-R) model. Basically, we consider three aspects as a systematic portion of the database design process. They are, the strategy that a designer selects to design an E-R diagram, designer's cognitive style, and the knowledge and preference of the database designer. An experiment has been carried out in order to verify the systematic relationship between above-mentioned three aspects and the E-R modeling performance. The target system is a professional baseball system. A normative E-R diagram was constructed based upon 48 E-R diagrams produced during the experiment. The ANOVA process has been used to analyze the results. It has been found that there exist significant differences in query-answering capacity and the completeness of the E-R model among design methods. Individual differences in cognitive styles has not been found to be significantly related to the modeling performance.

  • PDF

Fuzzy Identification by Means of an Auto-Tuning Algorithm and a Weighted Performance Index

  • Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.6
    • /
    • pp.106-118
    • /
    • 1998
  • The study concerns a design procedure of rule-based systems. The proposed rule-based fuzzy modeling implements system structure and parameter identification in the efficient from of "IF..., THEN..." statements, and exploits the theory of system optimization and fuzzy implication rules. The method for rule-based fuzzy modeling concerns the from of the conclusion part of the the rules that can be constant. Both triangular and Gaussian-like membership function are studied. The optimization hinges on an autotuning algorithm that covers as a modified constrained optimization method known as a complex method. The study introduces a weighted performance index (objective function) that helps achieve a sound balance between the quality of results produced for the training and testing set. This methodology sheds light on the role and impact of different parameters of the model on its performance. The study is illustrated with the aid of two representative numerical examples.

  • PDF

A study on the development of CAD system for the design of lens of the turn signal lamp (자동차 방향지시등 렌즈설계를 우한 CAD 시스템의 개발에 관한 연구)

  • 이재원;이우용
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.89-95
    • /
    • 1993
  • This paper presents the development of CAD system for the design of lens of the Turn Signal Lamp that can model and simulate its optical performance. The system consists of three main modules: skin surface modeling module, inner lens modeling module and optical performance simulation module. Skin surface geometry can be modeled by the input of data file and inner lens can be modeled by the input of only four parameter using its geometric characteristics. Also light distribution pattern, the barometer of optical performance is generated by means of finite ray tracing method. The system display modeled geometry, ray tracing and generated light distribution pattern.

  • PDF