Browse > Article
http://dx.doi.org/10.12989/sss.2017.19.1.067

On the modeling methods of small-scale piezoelectric wind energy harvesting  

Zhao, Liya (School of Civil and Environmental Engineering, Nanyang Technological University)
Yang, Yaowen (School of Civil and Environmental Engineering, Nanyang Technological University)
Publication Information
Smart Structures and Systems / v.19, no.1, 2017 , pp. 67-90 More about this Journal
Abstract
The interdisciplinary research area of small scale energy harvesting has attracted tremendous interests in the past decades, with a goal of ultimately realizing self-powered electronic systems. Among the various available ambient energy sources which can be converted into electricity, wind energy is a most promising and ubiquitous source in both outdoor and indoor environments. Significant research outcomes have been produced on small scale wind energy harvesting in the literature, mostly based on piezoelectric conversion. Especially, modeling methods of wind energy harvesting techniques plays a greatly important role in accurate performance evaluations as well as efficient parameter optimizations. The purpose of this paper is to present a guideline on the modeling methods of small-scale wind energy harvesters. The mechanisms and characteristics of different types of aeroelastic instabilities are presented first, including the vortex-induced vibration, galloping, flutter, wake galloping and turbulence-induced vibration. Next, the modeling methods are reviewed in detail, which are classified into three categories: the mathematical modeling method, the equivalent circuit modeling method, and the computational fluid dynamics (CFD) method. This paper aims to provide useful guidance to researchers from various disciplines when they want to develop and model a multi-way coupled wind piezoelectric energy harvester.
Keywords
energy harvesting; wind energy; modeling; aeroelasticity; piezoelectric material;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lee, B., Price, S. and Wong, Y. (1999), "Nonlinear aeroelastic analysis of airfoils: bifurcation and chaos", PrAeS, 35(3), 205-334.
2 Lefeuvre, E., Badel, A., Richard, C. and Guyomar, D. (2007), "Energy harvesting using piezoelectric materials: Case of random vibrations", J. Electroceram., 19(4), 349-355.   DOI
3 Lefeuvre, E., Badel, A., Richard, C., Petit, L. and Guyomar, D. (2006), "A comparison between several vibration-powered piezoelectric generators for standalone systems", Sensors Actuat. A: Phys., 126(2), 405-416.   DOI
4 Tran, C.T. and Petot, D. (1981), "Semi-empirical model for the dynamic stall of airfoils in view of application to the calculated responses of a helicopter in forward flight", Vert, 51, 35-53.
5 Truitt, A. and Mahmoodi, S.N. (2013), "A review on active wind energy harvesting designs", Int. J. Precision Eng. Manufact., 14(9), 1667-1675.   DOI
6 Bryant, M., Wolff, E. and Garcia, E. (2011), "Parametric design study of an aeroelastic flutter energy harvester", Proceedings of SPIE, 79770S.
7 Li, F., Xiang, T., Chi, Z., Luo, J., Tang, L., Zhao, L. and Yang, Y. (2013), "Powering indoor sensing with airflows: a trinity of energy harvesting, synchronous duty-cycling, and sensing", Proceedings of the 11th ACM Conference on Embedded Networked Sensor Systems.
8 Liang, J. and Liao, W.H. (2012), "Improved design and analysis of self-powered synchronized switch interface circuit for piezoelectric energy harvesting systems", ITIE, 59(4), 1950-1960.
9 Lien, I.C., Shu, Y.C., Wu, W.J., Shiu, S.M. and Lin, H.C. (2010), "Revisit of series-SSHI with comparisons to other interfacing circuits in piezoelectric energy harvesting", Smart Mater. Struct., 19(12), 125009.   DOI
10 Lu, F., Lee, H. and Lim, S. (2004), "Modeling and analysis of micro piezoelectric power generators for microelectromechanical-systems applications", Smart Mater. Struct., 13(1), 57.   DOI
11 Mahajan, A.J., Kaza, K.R. and Dowell, E. (1993), "Semi-empirical model for prediction of unsteady forces on an airfoil with application to flutter", JFS, 7(1), 87-103.
12 McAlister, K.W., Lambert, O. and Petot, D. (1984), "Application of the ONERA model of dynamic stall", DTIC Document, No. NASA-A-9824.
13 Lallart, M. and Guyomar, D. (2008), "An optimized self-powered switching circuit for non-linear energy harvesting with low voltage output", Smart Mater. Struct., 17(3), 035030.   DOI
14 Vestas V164-8.0 nacelle and hub. Retrieved November 4, 2014, from http://www.windpowermonthly.com/article/1211056/close---vestas-v164-80-nacelle-hub
15 Wang, Y. (2012), "Simultaneous energy harvesting and vibration control via piezoelectric materials", Ph.D. Dissertation, Virginia Polytechnic Institute and State University.
16 Wang, Z.L. (2011), Nanogenerators for self-powered devices and systems, Georgia Institute of Technology, Atlanta.
17 Weinstein, L.A., Cacan, M.R., So, P.M. and Wright, P.K. (2012), "Vortex shedding induced energy harvesting from piezoelectric materials in heating, ventilation and air conditioning flows", Smart Mater. Struct., 21(4), 045003.   DOI
18 Torres, E.O. and Rincon-Mora, G.A. (2009), "Electrostatic energyharvesting and battery-charging CMOS system prototype", IEEE Transactions on Circuits and Systems I: Regular Papers, 56(9), 1938-1948.   DOI
19 Wickenheiser, A.M., Reissman, T., Wu, W.J. and Garcia, E. (2010), "Modeling the effects of electromechanical coupling on energy storage through piezoelectric energy harvesting", IEEE/ASME T. Mechatronics, 15(3), 400-411.   DOI
20 Williams, C.B. and Yates, R.B. (1996), "Analysis of a microelectric generator for microsystems", Sensor. Actuat. A.-Phys., 52(1-3), 8-11.   DOI
21 Williamson, C.H. (1996), "Vortex dynamics in the cylinder wake", AnRFM, 28(1), 477-539.
22 Williamson, C.H.K. and Govardhan, R. (2004), "Vortex-induced vibrations", AnRFM, 36(1), 413-455.
23 Castagnetti, D. (2012), "Experimental modal analysis of fractalinspired multi-frequency structures for piezoelectric energy converters", Smart Mater. Struct., 21(9), 094009.   DOI
24 Chen, C.T., Islam, R.A. and Priya, S. (2006), "Electric energy generator", IEEE T. Ultrason. Ferr., 53(3), 656-661.   DOI
25 Chen, W.C. (1993), "A formulation of nonlinear limit cycle oscillation problems in aircraft flutter", Master Dissertation, Massachusetts Institute of Technology. Computational fluid dynamics, Wikipedia. Retrieved December 10, 2014, from http://en.wikipedia.org/wiki/Computational_fluid_dynamics
26 COMSOL CFD Module. Retrieved December 10, 2014, from http://www.comsol.com/cfd-module
27 Cook-Chennault, K., Thambi, N. and Sastry, A. (2008), "Powering MEMS portable devices-a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems", Smart Mater. Struct., 17(4), 043001.   DOI
28 Dai, H., Abdelkefi, A., Javed, U. and Wang, L. (2015), "Modeling and performance of electromagnetic energy harvesting from galloping oscillations", Smart Mater. Struct., 24(4), 045012.   DOI
29 Dai, H.L., Abdelkefi, A. and Wang, L. (2014a), "Theoretical modeling and nonlinear analysis of piezoelectric energy harvesting from vortex-induced vibrations", J. Intel. Mat. Syst. Str., 25(14), 1861-1874.   DOI
30 Dai, H.L., Abdelkefi, A. and Wang, L. (2014b), "Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations", Nonlinear Dynam., 77(3), 967-981.   DOI
31 Daqaq, M.F., Masana, R., Erturk, A. and Quinn, D.D. (2014), "On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion", ApMRv, 66(4), 040801.
32 McCarthy, J.M., Watkins, S., Deivasigamani, A. and John, S.J. (2016), "Fluttering energy harvesters in the wind: A review", J. Sound Vib., 361, 355-377.   DOI
33 Abdelkefi, A. (2012), "Global nonlinear analysis of piezoelectric energy harvesting from ambient and aeroelastic vibrations", Ph.D. Dissertation, Virginia Polytechnic Institute and State University.
34 Abdelkefi, A. (2016), "Aeroelastic energy harvesting: A review", IJES, 100, 112-135.
35 McKinney, W. and Delaurier, J. (1981), "Wingmill: an oscillatingwing windmill", JEner, 5(2), 109-115.   DOI
36 Mehmood, A., Abdelkefi, A., Hajj, M.R., Nayfeh, A.H., Akhtar, I. and Nuhait, A.O. (2013), "Piezoelectric energy harvesting from vortex-induced vibrations of circular cylinder", J. Sound Vib., 332(19), 4656-4667.   DOI
37 Meninger, S., Mur-Miranda, J.O., Amirtharajah, R., Chandrakasan, A.P. and Lang, J.H. (2001), "Vibration-to-electric energy conversion", IEEE T. Very Large Scale Integration (VLSI) Systems, 9(1), 64-76.   DOI
38 Mitcheson, P.D., Miao, P., Stark, B.H., Yeatman, E., Holmes, A. and Green, T. (2004), "MEMS electrostatic micropower generator for low frequency operation", Sensors Actuat. A: Phys., 115(2), 523-529.   DOI
39 Myers, R., Vickers, M., Kim, H. and Priya, S. (2007), "Small scale windmill", Appl. Phys. Lett., 90(5), 054106.   DOI
40 Novak, M. (1969), "Aeroelastic galloping of prismatic bodies", J. Eng. Mech. Div.-ASCE, 95, 115-142.
41 Novak, M. and Tanaka, H. (1974), "Effect of turbulence on galloping instability", J. Eng. Mech.-ASCE 100(1), 27-47.
42 Paidoussis, M.P., Price, S.J. and De Langre, E. (2010), Fluidstructure interactions: Cross-flow-induced instabilities, Cambridge University Press, New York.
43 Park, J., Morgenthal, G., Kim, K., Kwon, S.D. and Law, K.H. (2014), "Power evaluation of flutter-based electromagnetic energy harvesters using computational fluid dynamics simulations", J. Intel. Mat. Syst. Str., 25(14), 1800-1812.   DOI
44 Park, J.W., Jung, H.J., Jo, H. and Spencer, B.F. (2012), "Feasibility study of micro-wind turbines for powering wireless sensors on a cable-stayed bridge", Energies, 5(9), 3450-3464.   DOI
45 Abdelkefi, A. and Hajj, M.R. (2013), "Performance enhancement of wing-based piezoaeroelastic energy harvesting through freeplay nonlinearity", Theor. Appl. Mech. Lett., 3(4), 041001.   DOI
46 Abdelkefi, A., Hajj M.R. and Nayfeh A.H. (2012a), "Sensitivity analysis of piezoaeroelastic energy harvesters", J. Intel. Mat. Syst. Str., 23(13), 1523-1531.   DOI
47 Abdelkefi, A., Hajj M.R. and Nayfeh A.H. (2012b), "Phenomena and modeling of piezoelectric energy harvesting from freely oscillating cylinders", Nonlinear Dynam., 70(2), 1377-1388.   DOI
48 Abdelkefi, A., Hajj, M.R. and Nayfeh, A.H. (2012c), "Power harvesting from transverse galloping of square cylinder", Nonlinear Dynam., 70(2), 1355-1363.   DOI
49 Abdelkefi, A., Hajj, M.R. and Nayfeh, A.H. (2013d), "Piezoelectric energy harvesting from transverse galloping of bluff bodies", Smart Mater. Struct., 22(1), 015014.   DOI
50 Abdelkefi, A., Nayfeh, A. and Hajj, M. (2012a), "Effects of nonlinear piezoelectric coupling on energy harvesters under direct excitation", Nonlinear Dynam., 67(2), 1221-1232.   DOI
51 Abdelkefi, A., Nayfeh, A.H. and Hajj, M.R. (2012b), "Modeling and analysis of piezoaeroelastic energy harvesters", Nonlinear Dynam., 67(2), 925-939.   DOI
52 Abdelkefi, A., Nayfeh, A.H. and Hajj, M.R. (2012c), "Design of piezoaeroelastic energy harvesters", Nonlinear Dynam., 68(4), 519-530.   DOI
53 Dat, R. and Tran, C. (1981), "Investigation of the stall flutter of an airfoil with a semi-empirical model of 2 D flow", ONERA, TP no. 1981-146, 1981. 11 p.
54 De Marqui, C. and Erturk A. (2012), "Electroaeroelastic analysis of airfoil-based wind energy harvesting using piezoelectric transduction and electromagnetic induction", J. Intel. Mat. Syst. Str., 24(7), 846-854.   DOI
55 De Marqui, C., Erturk, A. and Inman, D.J. (2010), "Piezoaeroelastic modeling and analysis of a generator wing with continuous and segmented electrodes", J. Intel. Mat. Syst. Str., 21(10), 983-993.   DOI
56 Den Hartog, J.P. (1956), Mechanical Vibrations, New York: McGraw-Hill.
57 Dowell, E. (2015), A Modern Course in Aeroelasticity, Springer International Publishing.
58 Dowell, E., Edwards, J. and Strganac, T. (2003), "Nonlinear aeroelasticity", JAir, 40(5), 857-874.
59 Dugundji, J. (1992), "Nonlinear problems of aeroelasticity", Comput. Nonlinear Mech, Aerospace Eng., 1, 127-155.
60 Dunn, P. and Dugundji, J. (1992), "Nonlinear stall flutter and divergence analysis of cantilevered graphite/epoxy wings", AIAA J., 30(1), 153-162.   DOI
61 Dutoit, N.E., Wardle, B.L. and Kim, S.G. (2005), "Design considerations for mems-scale piezoelectric mechanical vibration energy harvesters", InFer, 71(1), 121-160.
62 El-Hami, M., Glynne-Jones, P., White, N., Hill, M., Beeby, S., James, E., Brown, A. and Ross, J. (2001), "Design and fabrication of a new vibration-based electromechanical power generator", Sensor. Actuat. A.-Phys., 92(1), 335-342.   DOI
63 Elvin, N.G. (2014), "Equivalent electrical circuits for advanced energy harvesting", J. Intel. Mat. Syst. Str., 25(14), 1715-1726.   DOI
64 Xiang, J., Wu, Y. and Li, D. (2015), "Energy harvesting from the discrete gust response of a piezoaeroelastic wing: Modeling and performance evaluation", J. Sound Vib., 343, 176-193.   DOI
65 Xiang, J., Yan, Y. and Li, D. (2014), "Recent advance in nonlinear aeroelastic analysis and control of the aircraft", ChJA, 27(1), 12-22.
66 Xiao, Q. and Zhu, Q. (2014), "A review on flow energy harvesters based on flapping foils", JFS, 46, 174-191.
67 Xie, J., Yang, J., Hu, H., Hu, Y. and Chen, X. (2012), "A piezoelectric energy harvester based on flow-induced flexural vibration of a circular cylinder", J. Intel. Mat. Syst. Str., 23(2), 135-139.   DOI
68 Xu, F., Yuan, F., Hu, J. and Qiu, Y. (2010), "Design of a miniature wind turbine for powering wireless sensors", Proceedings of SPIE, 764741.
69 Yan, Z. and Abdelkefi, A. (2014), "Nonlinear characterization of concurrent energy harvesting from galloping and base excitations", Nonlinear Dynam., 77(4), 1171-1189.   DOI
70 Yang, Y. and Tang, L. (2009), "Equivalent circuit modeling of piezoelectric energy harvesters", J. Intel. Mat. Syst. Str., 20(18), 2223-2235.   DOI
71 Yang, Y., Zhao, L. and Tang, L. (2013), "Comparative study of tip cross-sections for efficient galloping energy harvesting", Appl. Phys. Lett., 102(6), 064105.   DOI
72 Zhao, L. (2015), "Small-scale wind energy harvesting using piezoelectric materials", Ph.D. Dissertation, Nanyang Technological University.
73 Zhao, L. and Yang, Y. (2015a), "Enhanced aeroelastic energy harvesting with a beam stiffener", Smart Mater. Struct., 24(3), 032001.   DOI
74 Abdelkefi, A., Nayfeh, A.H. and Hajj M.R. (2012d), "Enhancement of power harvesting from piezoaeroelastic systems", Nonlinear Dynam., 68(4), 531-541.   DOI
75 Abdelkefi, A., Scanlon, J.M., Mcdowell, E. and Hajj, M.R. (2013), "Performance enhancement of piezoelectric energy harvesters from wake galloping", Appl. Phys. Lett., 103(3), 033903.   DOI
76 Zhao, L. and Yang, Z. (1990), "Chaotic motions of an airfoil with non-linear stiffness in incompressible flow", J. Sound Vib., 138(2), 245-254.   DOI
77 Zhao, L., Liang, J., Tang, L., Yang, Y. and Liu, H. (2015), "Enhancement of galloping-based wind energy harvesting by synchronized switching interface circuits", Proceedings of SPIE, 943113.
78 Zhao, L., Tang, L. and Yang, Y. (2012), "Small wind energy harvesting from galloping using piezoelectric materials", Proceedings of the ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems.
79 Zhao, L., Tang, L. and Yang, Y. (2013), "Comparison of modeling methods and parametric study for a piezoelectric wind energy harvester", Smart Mater. Struct., 22(12), 125003.   DOI
80 Zhao, L., Tang, L. and Yang, Y. (2014a), "Enhanced piezoelectric galloping energy harvesting using 2 degree-of-freedom cut-out cantilever with magnetic interaction", Jpn. J. Appl. Phys., 53(6), 060302.   DOI
81 Zhao, L., Tang, L. and Yang, Y. (2016), "Synchronized charge extraction in galloping piezoelectric energy harvesting", J. Intel. Mat. Syst. Str., 27(4), 453-468.   DOI
82 Zhao, L., Tang, L., Wu, H. and Yang, Y. (2014b), "Synchronized charge extraction for aeroelastic energy harvesting", Proceedings of SPIE, 90570N.
83 Zhu, Q. (2011), "Optimal frequency for flow energy harvesting of a flapping foil", J. Fluid Mech., 675, 495-517.   DOI
84 Zhao, L. and Yang, Y. (2015b), "Analytical solutions for galloping-based piezoelectric energy harvesters with various interfacing circuits", Smart Mater. Struct., 24(7), 075023.   DOI
85 Zhu, Q. and Peng, Z. (2009), "Mode coupling and flow energy harvesting by a flapping foil", Physics of Fluids (1994-present), 21(3), 033601.   DOI
86 Zhu, Q., Haase, M. and Wu, C.H. (2009), "Modeling the capacity of a novel flow-energy harvester", Appl. Math. Model., 33(5), 2207-2217.   DOI
87 Pellegrini, S.P., Tolou, N., Schenk, M. and Herder, J.L. (2013), "Bistable vibration energy harvesters: A review", J. Intel. Mat. Syst. Str., 24(11), 1303-1312.   DOI
88 Peters, D.A. (1985), "Toward a unified lift model for use in rotor blade stability analyses", J. Am. Helicopter Soc., 30(3), 32-42.   DOI
89 Peters, D.A., Karunamoorthy, S. and Cao, W.M. (1995), "Finite state induced flow models. I-Two-dimensional thin airfoil", JAir, 32(2), 313-322.
90 Piezoelectric materials. Retrieved November 4, 2014, from http://www.piezomaterials.com/
91 Pobering, S. and Schwesinger, N. (2008), "Power supply for wireless sensor systems", Proceedings of Sensors, 2008 IEEE, 685-688.
92 Pobering, S., Menacher, M., Ebermaier, S. and Schwesinger, N. (2009), "Piezoelectric power conversion with self-induced oscillation", Proceedings of PowerMEMS, 384-387.
93 Powell, A. (1958), "On the fatigue failure of structures due to vibrations excited by random pressure fields", J. Acoust. Soc. Am., 30(12), 1130-1135.   DOI
94 Priya, S. (2005), "Modeling of electric energy harvesting using piezoelectric windmill", Appl. Phys. Lett., 87(18), 184101.   DOI
95 Priya, S., Chen, C.T., Fye, D. and Zahnd, J. (2005), "Piezoelectric windmill: A novel solution to remote sensing", Jpn. J. Appl. Phys., 44(3), 104-107.   DOI
96 Rancourt, D., Tabesh, A. and Frechette, L.G. (2007), "Evaluation of centimeter-scale micro windmills: aerodynamics and electromagnetic power generation", Proceedings of PowerMEMS, 93-96.
97 Roundy, S. and Wright, P.K. (2004), "A piezoelectric vibration based generator for wireless electronics", Smart Mater. Struct., 13(5), 1131-1142.   DOI
98 Abdelkefi, A., Vasconcellos, R., Marques, F.D. and Hajj, M.R. (2012d), "Bifurcation analysis of an aeroelastic system with concentrated nonlinearities", Nonlinear Dynam., 69(1-2), 57-70.   DOI
99 Abdelkefi, A., Yan, Z. and Hajj, M.R. (2013b), "Modeling and nonlinear analysis of piezoelectric energy harvesting from transverse galloping", Smart Mater. Struct., 22(2), 025016.   DOI
100 Akaydin, H.D. (2012), "Piezoelectric energy harvesting from fluid flow", Ph.D. Dissertation, City University of New York.
101 Akaydin, H.D., Elvin, N. and Andreopoulos, Y. (2010a), "Energy harvesting from highly unsteady fluid flows using piezoelectric materials", J. Intel. Mat. Syst. Str., 21(13), 1263-1278.   DOI
102 Akaydin, H.D., Elvin, N. and Andreopoulos, Y. (2010b), "Wake of a cylinder: a paradigm for energy harvesting with piezoelectric materials", Exp. Fluids, 49(1), 291-304.   DOI
103 Akaydin, H.D., Elvin, N. and Andreopoulos, Y. (2012), "The performance of a self-excited fluidic energy harvester", Smart Mater. Struct., 21(2), 025007.   DOI
104 ANSYS CFX. Retrieved December 10, 2014, from http://www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics/Fluid+Dynamics+Products/ANSYS+CFX
105 ANSYS Fluent. Retrieved December 10, 2014, from http://www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics/Fluid+Dynamics+Products/ANSYS+Fluent
106 Elvin, N.G. and Elvin, A.A. (2009a), "A general equivalent circuit model for piezoelectric generators", J. Intel. Mat. Syst. Str., 20(1), 3-9.   DOI
107 Elvin, N.G. and Elvin, A.A. (2009b), "A coupled finite element-circuit simulation model for analyzing piezoelectric energy generators", J. Intel. Mat. Syst. Str., 20(5), 587-595.   DOI
108 Elvin, N.G. and Elvin, A.A. (2011), "An experimentally validated electromagnetic energy harvester", J. Sound Vib., 330(10), 2314-2324.   DOI
109 Erturk, A. (2009), "Electromechanical modeling of piezoelectric energy harvesters", Ph.D. Dissertation, Virginia Polytechnic Institute and State University.
110 Erturk, A. and Inman, D.J. (2008a), "A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters", J. Vib. Acoust., 130(4), 041002.   DOI
111 Erturk, A. and Inman, D.J. (2008b), "On mechanical modeling of cantilevered piezoelectric vibration energy harvesters", J. Intel. Mat. Syst. Str., 19(11), 1311-1325.   DOI
112 Erturk, A., Vieira, W., De Marqui, Jr C. and Inman, D. (2010), "On the energy harvesting potential of piezoaeroelastic systems", Appl. Phys. Lett., 96(18), 184103.   DOI
113 Ewere, F., Wang, G. and Cain, B. (2014), "Experimental investigation of galloping piezoelectric energy harvesters with square bluff bodies", Smart Mater. Struct., 23(10), 104012.   DOI
114 Roundy, S., Wright, P.K. and Rabaey, J. (2003), "A study of low level vibrations as a power source for wireless sensor nodes", Comput. Commun., 26(11), 1131-1144.   DOI
115 Anton, S.R. and Sodano, H.A. (2007), "A review of power harvesting using piezoelectric materials (2003-2006)", Smart Mater. Struct., 16(3), 1-21.   DOI
116 Au-Yang, M.K. (2001), Flow-induced vibration of power and process plant components : a practical workbook (1st ed.), ASME Press, New York, NY.
117 Balakrishnan, A.V. (2012), Aeroelasticity-Continuum Theory, Springer-Verlag New York, New York, NY.
118 Facchinetti, M.L., De Langre, E. and Biolley, F. (2002), "Vortex shedding modeling using diffusive van der Pol oscillators", Comptes Rendus Mecanique, 330(7), 451-456.   DOI
119 Facchinetti, M.L., De Langre, E. and Biolley, F. (2004), "Coupling of structure and wake oscillators in vortex-induced vibrations", JFS, 19(2), 123-140.
120 Federspiel, C.C. and Chen, J. (2003), "Air-powered sensor", Proceedings of Sensors, 2003. Proceedings of IEEE, 22-25.
121 Ruscheweyh, H. (1983), "Aeroelastic interference effects between slender structures", J. Wind Eng. Ind. Aerod., 14(1), 129-140.   DOI
122 Sarpkaya, T. (2004), "A critical review of the intrinsic nature of vortex-induced vibrations", JFS, 19(4), 389-447.
123 Schmidt, V.H. (1985), US4536674 A.
124 Schmidt, V.H. (1992), "Piezoelectric energy conversion in windmills", Proceedings of Ultrasonics Symposium, IEEE 1992, 897-904.
125 Shiraishi, N., Matsumoto, M. and Shirato, H. (1986), "On aerodynamic instabilities of tandem structures", J. Wind Eng. Ind. Aerod., 23, 437-447.   DOI
126 Sirohi, J. and Mahadik, R. (2011), "Piezoelectric wind energy harvester for low-power sensors", J. Intel. Mat. Syst. Str., 22(18), 2215-2228.   DOI
127 Sirohi, J. and Mahadik, R. (2012), "Harvesting wind energy using a galloping piezoelectric beam", J. Vib. Acoust., 134(1), 011009.   DOI
128 Sivadas, V. and Wickenheiser, A.M. (2011), "A study of several vortex-induced vibration techniques for piezoelectric wind energy harvesting", Proceedings of SPIE, 79770F.
129 Sodano, H.A., Park, G. and Inman, D.J. (2004), "An investigation into the performance of macro-fiber composites for sensing and structural vibration applications", MSSP, 18(3), 683-697.
130 Balasubramanian, S., Skop, R., Haan, F. and Szewczyk, A. (2000), "Vortex-excited vibrations of uniform pivoted cylinders in uniform and shear flow", JFS, 14(1), 65-85.
131 Bansal, A., Howey, D. and Holmes, A. (2009), "CM-scale air turbine and generator for energy harvesting from low-speed flows", Proceedings of the Solid-State Sensors, Actuators and Microsystems Conference, 2009. TRANSDUCERS 2009. International.
132 Barrero-Gil, A., Alonso, G. and Sanz-Andres, A. (2010), "Energy harvesting from transverse galloping", J. Sound Vib., 329(14), 2873-2883.   DOI
133 Barrero-Gil, A., Pindado, S. and Avila, S. (2012), "Extracting energy from Vortex-Induced Vibrations: A parametric study", Appl. Math. Modell., 36(7), 3153-3160.   DOI
134 Beeby, S.P., Tudor, M.J. and White, N.M. (2006), "Energy harvesting vibration sources for microsystems applications", Meas. Sci. Technol., 17(12), 175-195.   DOI
135 Fung, Y.C. (1955), An introduction to the theory of aeroelasticity, John Wiley, New York, NY.
136 Global wind energy council, wind in numbers. Retrieved November 4, 2014, from http://www.gwec.net/globalfigures/wind-in-numbers/
137 Glynne-Jones, P., Tudor, M., Beeby, S. and White, N. (2004), "An electromagnetic, vibration-powered generator for intelligent sensor systems", Sensor. Actuat. A-Phys., 110(1), 344-349.   DOI
138 Gomez, J.C., Bryant, M. and Garcia, E. (2014), "Low-order modeling of the unsteady aerodynamics in flapping wings", JAir, 1-10.
139 Harne, R. and Wang, K. (2013), "A review of the recent research on vibration energy harvesting via bistable systems", Smart Mater. Struct., 22(2), 023001.   DOI
140 Hobbs, W.B. and Hu, D.L. (2012), "Tree-inspired piezoelectric energy harvesting", JFS, 28, 103-114.
141 Hobeck, J.D. and Inman, D. (2012a), "Design and analysis of dual pressure probes for predicting turbulence-Induced vibration in low velocity flow", Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.
142 Sorribes-Palmer, F. and Sanz-Andres, A. (2013), "Optimization of energy extraction in transverse galloping", JFS, 43, 124-144.
143 Sousa, V., De M Anicezio, M., De Marqui Jr., C. and Erturk, A. (2011), "Enhanced aeroelastic energy harvesting by exploiting combined nonlinearities: theory and experiment", Smart Mater. Struct., 20(9), 094007.   DOI
144 Stanton, S.C., Erturk, A., Mann, B.P. and Inman, D.J. (2010), "Nonlinear piezoelectricity in electroelastic energy harvesters: modeling and experimental identification", J. Appl. Phys., 108(7), 074903.   DOI
145 Bibo, A. (2014), "Investigation of concurrent energy harvesting from ambient vibrations and wind", Ph.D. Dissertation, Clemson University.
146 Bibo, A. and Daqaq, M.F. (2013a), "Energy harvesting under combined aerodynamic and base excitations", J. Sound Vib., 332(20), 5086-5102.   DOI
147 Bibo, A. and Daqaq, M.F. (2013b), "Investigation of concurrent energy harvesting from ambient vibrations and wind using a single piezoelectric generator", Appl. Phys. Lett., 102(24), 243904.   DOI
148 Bibo, A. and Daqaq, M.F. (2014), "On the optimal performance and universal design curves of galloping energy harvesters", Appl. Phys. Lett., 104(2), 023901.   DOI
149 Bibo, A., Abdelkefi, A. and Daqaq, M.F. (2015), "Modeling and characterization of a piezoelectric energy harvester under combined aerodynamic and base excitations", J. Vib. Acoust., 137(3), 031017.   DOI
150 Hobeck, J.D. and Inman, D.J. (2012b), "Artificial piezoelectric grass for energy harvesting from turbulence-induced vibration", Smart Mater. Struct., 21(10), 105024.   DOI
151 Hobeck, J.D. (2014), "Energy harvesting with piezoelectric grass for autonomous self-sustaining sensor networks", Ph.D. Dissertation, The University of Michigan.
152 Hobeck, J.D. and Inman, D.J. (2014), "A distributed parameter electromechanical and statistical model for energy harvesting from turbulence-induced vibration", Smart Mater. Struct., 23(11), 115003.   DOI
153 Hobeck, J.D., Geslain, D. and Inman, D.J. (2014), "The dual cantilever flutter phenomenon: a novel energy harvesting method", Proceedings of SPIE, 906113.
154 Sterken, T., Fiorini, P., Baert, K., Borghs, G. and Puers, R. (2004), "Novel design and fabrication of a MEMS electrostatic vibration scavenger", Proceedings of PowerMEMS 18-21.
155 Strasser, M., Aigner, R., Lauterbach, C., Sturm, T., Franosch, M. and Wachutka, G. (2004), "Micromachined CMOS thermoelectric generators as on-chip power supply", Sensors Actuat. A: Phys., 114(2), 362-370.   DOI
156 Strganac, T.W., Ko, J. and Thompson, D.E. (2000), "Identification and control of limit cycle oscillations in aeroelastic systems", J. Guid. Control, Dynam., 23(6), 1127-1133.   DOI
157 Tang, D. and Dowell, E. (1996), "Comments on the ONERA stall aerodynamic model and its impact on aeroelastic stability", JFS, 10(4), 353-366.
158 Bressers, S., Avirovik, D., Lallart, M., Inman, D.J. and Priya, S. (2011), Contact-less Wind Turbine Utilizing Piezoelectric Bimorphs with Magnetic Actuation, Springer, New York.
159 Bressers, S., Vernier, C., Regan, J., Chappell, S., Hotze, M., Luhman, S., Avirovik, D. and Priya, S. (2010), "Small-scale modular wind turbine", Proceedings of SPIE, 764333.
160 Howey, D., Bansal, A. and Holmes, A. (2011), "Design and performance of a centimetre-scale shrouded wind turbine for energy harvesting", Smart Mater. Struct., 20(8), 085021.   DOI
161 Huang, L. (1995), "Flutter of cantilevered plates in axial flow", JFS, 9(2), 127-147.
162 Humdinger Wind Energy, Windbelt Innovation. Retrieved November 7, 2014, from http://www.humdingerwind.com
163 Jeon, Y., Sood, R., Jeong, J.H. and Kim, S.G. (2005), "MEMS power generator with transverse mode thin film PZT", Sensor. Actuat. A.-Phys., 122(1), 16-22.   DOI
164 Jones, K.D., Davids, S. and Platzer, M.F. (1999), "Oscillatingwing power generator", Proceedings of the ASME/JSME joint fluids engineering conference.
165 Tang, D.M., Yamamoto, H. and Dowell, E.H. (2003), "Flutter and limit cycle oscillations of two-dimensional panels in threedimensional axial flow", JFS, 17(2), 225-242.
166 Tang, L., Yang, Y. and Soh, C.K. (2010), "Toward broadband vibration-based energy harvesting", J. Intel. Mat. Syst. Str., 21(18), 1867-1897.   DOI
167 Tang, L., Zhao, L., Yang, Y. and Lefeuvre, E. (2015), "Equivalent circuit representation and analysis of galloping-based wind energy harvesting", IEEE/ASME T. Mechatronics, 20, 834-844.   DOI
168 Theodorsen, T. (1934). General Theory of Aerodynamic Instability and the Mechanism of Flutter.
169 Tien, C.M.T. and Goo, N.S. (2010), "Use of a piezo-composite generating element for harvesting wind energy in an urban region", Aircraft Eng. Aerospace Technol., 82(6), 376-381.   DOI
170 Tokoro, S., Komatsu, H., Nakasu, M., Mizuguchi, K. and Kasuga, A. (2000), "A study on wake-galloping employing full aeroelastic twin cable model", J. Wind Eng. Ind. Aerod., 88(2), 247-261.   DOI
171 Bryant, M. (2012), "Aeroelastic flutter vibration energy harvesting: modeling, testing, and system eesign", Ph.D. Dissertation, Cornell University.
172 Bryant, M. and Garcia, E. (2009), "Energy harvesting: a key to wireless sensor nodes", Proceedings of the 2nd International Conference on Smart Materials and Nanotechnology in Engineering, 74931W.
173 Bryant, M. and Garcia, E. (2011), "Modeling and testing of a novel aeroelastic flutter energy harvester", J. Vib. Acoust., 133(1), 011010.   DOI
174 Bryant, M., Pizzonia, M., Mehallow, M. and Garcia, E. (2014), "Energy harvesting for self-powered aerostructure actuation", Proceedings of SPIE, 90570E.
175 Bryant, M., Schlichting, A.D. and Garcia, E. (2013), "Toward efficient aeroelastic energy harvesting: device performance comparisons and improvements through synchronized switching", Proceedings of SPIE, 868807.
176 Bryant, M., Shafer, M.W. and Garcia, E. (2012), "Power and efficiency analysis of a flapping wing wind energy harvester", Proceedings of SPIE, 83410E
177 Bibo, A., Alhadidi, A.H. and Daqaq. M.F. (2015), "Exploiting a nonlinear restoring force to improve the performance of flow energy harvesters", J. Appl. Phys., 117(4), 045103.   DOI
178 Bryant, M., Tse, R. and Garcia, E. (2012), "Investigation of host structure compliance in aeroelastic energy harvesting", Proceedings of the ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems.
179 Jung, H.J. and Lee, S.W. (2011), "The experimental validation of a new energy harvesting system based on the wake galloping phenomenon", Smart Mater. Struct., 20(5), 055022.   DOI
180 Karami, M.A. (2012), "Micro-scale and nonlinear vibrational energy harvesting", Ph.D. Dissertation, Virginia Polytechnic Institute and State University.
181 Karami, M.A., Farmer, J.R. and Inman, D.J. (2013), "Parametrically excited nonlinear piezoelectric compact wind turbine", Renew. Energ., 50, 977-987.   DOI
182 Kim, H.S., Kim, J.H. and Kim, J. (2011), "A review of piezoelectric energy harvesting based on vibration", Int. J. Precision Eng. Manufact., 12(6), 1129-1141.   DOI
183 Hodges, D.H. and Pierce, G.A. (2002), Introduction to Structural Dynamics and Aeroelasticity (Vol. 15), Cambridge University Press.
184 Kishore, R.A., Coudron, T. and Priya, S. (2013), "Small-scale wind energy portable turbine (SWEPT)", J. Wind Eng. Ind. Aerod., 116, 21-31.   DOI
185 Kwon, S.D. (2010), "A T-shaped piezoelectric cantilever for fluid energy harvesting", Appl. Phys. Lett., 97(16), 164102.   DOI