• Title/Summary/Keyword: Performance Evaluation Indicator

Search Result 227, Processing Time 0.028 seconds

Evaluation of Microcracks in Thermal Damaged Concrete Using Nonlinear Ultrasonic Modulation Technique (비선형 초음파 변조 기법을 이용한 열손상 콘크리트의 미세균열 평가)

  • Park, Sun-Jong;Yim, Hong Jae;Kwak, Hyo-Gyung
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.651-658
    • /
    • 2012
  • This paper concentrates on the evaluation of microcracks in thermal damaged concrete on the basis of the nonlinear ultrasonic modulation technique. Since concrete structure exposed to high temperature accompanies the development of microcracks due to the physical and chemical changes from temperature and exposed time, the adoption of nonlinear approach is required. Instead of using the conventional ultrasonic nondestructive methods which have the limitation in evaluating excessive microcracks, accordingly, a nonlinear ultrasonic modulation method which shows better sensitivity in quantifying microcracks is introduced. Upon the analysis for the modulation of ultrasonic wave and low frequency impact to measure the nonlinearity parameter, which can be used as an indicator of thermal damage, the verification processes for the introduced technique are followed: SEM investigation and permeable pore space test are performed to characterize thermally induced microcracks in concrete, and ultrasonic pulse velocity tests are performed to confirm the outstanding sensitivity of nonlinear ultrasonic modulation technique. In advance, compressive strength of thermal damaged concrete is measured to represent the effect of microcracks on performance degradation. Correlation studies between experimental data and measured data show that nonlinear ultrasonic modulation technique can effectively be used to quantify thermally induced microcracks, and to estimate the compressive strength of thermally damaged concrete.

A Study on the Effect of Atomization of Pressure Nozzle with Blower - Air (압력식 노즐에서 송풍공기가 미립화에 미치는 영향에 관한 연구)

  • Koh, Kyoung-Han;Lim, Sang-Ho
    • Journal of Digital Convergence
    • /
    • v.10 no.5
    • /
    • pp.283-288
    • /
    • 2012
  • This study was undertaken to investigation the spray characteristics of the twin fluid atomization nozzle system. The light oil was injected at the normal temperature and injection pressure was 5 bar - 10 bar by 1 bar and volume flow was 0.5, 1.0 and 2,0 mmH2O(X10-2). We measured the SMD of sprayed droplet to study spray characteristics. The following conclusions were reached from the results of these study. 1. The more injection pressure increased, the more SMD decreased. 2. The more measuring distance between pressure nozzle tip and analyser beam increased, the more SMD increased. 3. SMD of the blower-air-added injection system were shown, increasing volume flow decreased respectively. The result of this study indicated the blower-air-added injection system induced beneficial changes in SMD. And it will be considered important indicator for spray characteristics design and performance evaluation of twin fluid atomization nozzle system.

Strength and Deformation Characteristics on Stabilized Pavement Geomaterials (II) : Numerical Analysis (안정처리된 도로하부 지반재료의 강도 및 변형특성 (II) : 수치해석)

  • Park, Seong-Wan;Ji, Jong-Keun
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.205-216
    • /
    • 2009
  • As a subsequent study, this paper presents a comparative evaluation of structural responses in asphalt pavements with stabilized foundations. The approach based on a finite element analysis which incorporates non-linear behaviors of pavement geomaterials is used to estimate each performance indicator under standard single axle loading condition. In addition, results from laboratory tests are used to provide physical and mechanical properties of stabilized geomaterials for analyzing various pavement structures. Changes in pavement responses with varying layer thickness and stabilizer contents were investigated. It is found that the effect of layer thickness and stabilizer content is a critical factor in structural response of stabilized pavements. Moreover, a design criterion is proposed for selecting minimum contents of stabilizer of coarse-grained geomaterials based on a result of unconfined compressive strength and proper layer thickness of foundations.

  • PDF

Clinical Evaluation of the ATS Valve Replacement (ATS 기계판막의 단기 임상성적)

  • 김학제;조성준
    • Journal of Chest Surgery
    • /
    • v.30 no.3
    • /
    • pp.293-299
    • /
    • 1997
  • With the introduction of new cardiac prosthesis, it behooves surgeons and cardiologists to monitor its performance carefully. ATS (Advancing The Standard) prosthetic valve has been used first in Guro hospital in Korea, since August 1994. Between August 1994 and July 1995, 21 patients received 28 ATS prosthesis(9 aortic, 19 mitral).19mi1ra1 valves were implanted through the "Extended Transseptal Approach" 10 were ma e and 11 were female, ranging from 20 to 54 years of age(Mean age : 37 years). The follow up period 126 patient-months(mean 6.1 months), varied from 1 month to 12 months. NYHA functional class was improved significantly, from $2.9\pm0.7$ preoperatively to $1.4\pm0.5$ postoperatively. Ejection fraction was also improved from $55.5\pm6.1%$ preoperatively to 59.8 $\pm7.4%$ postoperatively. Lactic dehydrogenase(LDH) was used as an indicator of hemolysis. The value of LDH changed from 483.3 $\pm$ 162 lUlL preoperatively to $527\pm274$ lUff postoperatively with no clinical significailce. Valve related complications, such as thromboembolism, valve thrombosis, anticoagulant related hemorrhage and prosthetic valve endocarditis did not develop except one anticoagulant related intracranial hemorrhage. There were no mortalities. This experience encourages us to continue using the ATS prosthetic valve, and this study will help those patients who need to have their heart valves replaced. replaced.

  • PDF

Estimation of the methane generation rate constant using a large-scale respirometer at a landfill site

  • Park, Jin-Kyu;Tameda, Kazuo;Higuchi, Sotaro;Lee, Nam-Hoon
    • Environmental Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.339-346
    • /
    • 2017
  • The objective of this study is the evaluation of the performance of a large-scale respirometer (LSR) of 17.7 L in the determination of the methane generation rate constant (k) values. To achieve this objective, a comparison between anaerobic (GB21) and LSR tests was conducted. The data were modeled using a linear function, and the resulting correlation coefficient ($R^2$) of the linear regression is 0.91. This result shows that despite the aerobic conditions, the biodegradability values that were obtained from the LSR test produced results that are similar to those from the GB21 test. In this respect, the LSR test can be an indicator of the anaerobic biodegradability for landfill waste. In addition, the results show the high repeatability of the tests with an average coefficient of variance (CV) that is lower than 10%; furthermore, the CV for the LSR is lower than that of the GB21, which indicates that the LSR-test method could provide a better representation of waste samples. Therefore, the LSR method allows for both the prediction of the long-term biodegradation potential in a shorter length of time and the reduction of the sampling errors that are caused by the heterogeneity of waste samples. The k values are $0.156y^{-1}$ and $0.127y^{-1}$ for the cumulative biogas production (GB21) and the cumulative oxygen uptake for the LSR, respectively.

Evaluation of goodness of fit of semiparametric and parametric models in analysis of factors associated with length of stay in neonatal intensive care unit

  • Kheiry, Fatemeh;Kargarian-Marvasti, Sadegh;Afrashteh, Sima;Mohammadbeigi, Abolfazl;Daneshi, Nima;Naderi, Salma;Saadat, Seyed Hossein
    • Clinical and Experimental Pediatrics
    • /
    • v.63 no.9
    • /
    • pp.361-367
    • /
    • 2020
  • Background: Length of stay is a significant indicator of care effectiveness and hospital performance. Owing to the limited number of healthcare centers and facilities, it is important to optimize length of stay and associated factors. Purpose: The present study aimed to investigate factors associated with neonatal length of stay in the neonatal intensive care unit (NICU) using parametric and semiparametric models and compare model fitness according to Akaike information criterion (AIC) between 2016 and 2018. Methods: This retrospective cohort study reviewed 600 medical records of infants admitted to the NICU of Bandar Abbas Hospital. Samples were identified using census sampling. Factors associated with NICU length of stay were investigated based on semiparametric Cox model and 4 parametric models including Weibull, exponential, log-logistic, and log-normal to determine the best fitted model. The data analysis was conducted using R software. The significance level was set at 0.05. Results: The study findings suggest that breastfeeding, phototherapy, acute renal failure, presence of mechanical ventilation, and availability of central venous catheter were commonly identified as factors associated with NICU length of stay in all 5 models (P<0.05). Parametric models showed better fitness than the Cox model in this study. Conclusion: Breastfeeding and availability of central venous catheter had protective effects against length of stay, whereas phototherapy, acute renal failure, and mechanical ventilation increased length of stay in NICU. Therefore, the identification of factors associated with NICU length of stay can help establish effective interventions aimed at decreasing the length of stay among infants.

Evaluation of Seismic Strengthening Approach at the Boundary Elements of RC Walls using Prestressed Wire Rope Units (프리스트레스트 와이어로프를 사용한 RC 벽체의 단부 경계요소 내진보강 평가)

  • Kwon, Hyuck-Jin;Yang, Keun-Hyeok;Byun, Hang-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.56-63
    • /
    • 2018
  • The present study examined the reversal cyclic flexural behavior of walls with jacket section approach for seismic strengthening through forming the boundary elements at both ends of the wall. The prestressed wire ropes were used for the lateral reinforcement to confine the boundary element of the wall. The main parameter investigated was the height of the jacket section for strengthening. The limit height of the strengthening jacket section was determined by comparing the moment distributions between the existing and strengthened walls. Test results showed that the examined jacket section approach was significantly effective in enhancing the flexural resistance of walls, indicating 46% higher stiffness at peak strength and 210% greater work damage indicator, compared with the flexural performance of the unstrengthened wall. The ductility of the strengthened walls was insignificantly affected by the height of the jacket section when the height is greater than twice the wall length. The flexural capacity of the strengthened walls was 22% higher than the predictions obtained using the equivalent stress block specified in ACI 318-14.

Emergy-Simulation Based Building Retrofit

  • Hwang, Yi
    • KIEAE Journal
    • /
    • v.14 no.3
    • /
    • pp.5-13
    • /
    • 2014
  • This paper introduces emergy(spelled with "m") that is a new environmental indicator in architecture, aiming to clarify conflicting claims of building design components in the process of energy-retrofit. Much of design practitioners' attention on low energy use in operational phases, may simply shift the lowered environmental impact within the building boundary to large consumption of energy in another area. Specifically, building energy reduction strategies without a holistic view starting from natural formation, may lead to the depletion of non-renewable geobiological sources (e.g. minerals, fossil fuels, etc.), which leaves a building with an isolated energy-efficient object. Therefore, to overcome the narrow outlook, this research discusses the total ecological impact of a building which embraces all process energy as well as environmental cost represented by emergy. A case study has been conducted to explore emergy-driven design work. In comparison with operational energy-driven scenarios, the results elucidate how energy and emergy-oriented decision-making bring about different design results, and quantify building components' emergy contribution in the end. An average-size ($101.9m^2$) single family house located in South Korea was sampled as a benchmark case, and the analysis of energy and material use was conducted for establishment of the baseline. Adoption of the small building is effective for the goal of study since this research intends to measure environmental impact according to variation of passive design elements (windows size, building orientation, wall materials) with new metric (emergy) regardless of mechanical systems. Performance simulations of operational energy were developed and analyzed separately from the calculation of emergy magnitudes in building construction, and then the total emergy demand of each proposed design was evaluated. Emergy synthesis results verify that the least operational energy scenario requires greater investment in indirect energy in construction, which clearly reveals that efficiency gains are likely to be overwhelmed by increment of material flows. This result places importance on consideration of indirect energy use underscoring necessity of emergy evaluation towards the environment-friendly building in broader sense.

The Concept and Mesurement of Resource Rent and Profit (자원 렌트와 이익의 개념 및 측정에 관한 연구)

  • Nam, Soo-Hyun
    • The Journal of Fisheries Business Administration
    • /
    • v.49 no.1
    • /
    • pp.67-89
    • /
    • 2018
  • In fisheries, as well as in other natural resource-based industries, there is difference between profit and rent. The former is a basic indicator for gauging the business performance of firms, while the latter is for the evaluation of the contribution of resources and industry to economic welfare. Put simply, resource economists are mainly concerned about rent, including pure resource rent and producer surplus (intra-marginal rent [IMR]). In other hand, business economists are mainly concerned about the profitability of the firms comprising the industry. In the academic literature, there are not always clear definitions of the profit and rent concepts and their use in actual analyses. This article will mainly discuss and clarify differences and similarities in profit and rent concepts. In the classical fisheries economic model with one-dimensional homogenous effort and a constant cost per unit of effort, no rent exists in open-access equilibrium. A simple change in this model, for example by introducing heterogeneous effort, opens it to the existence of rent, specifically IMR, at open-access equilibrium. We estimated resource rent and profit from the data using SNA(system of national accounts) and accounting data methods. RR(resource rent) is composed of value-added, compensation of employees, consumption of fixed capital and normal profit in SNA. RR(resource rent) is composed of EBT, Depreciation of fishing rights, financial costs of fishing rights and calculated interests on equity in accounting data methods. We found that the result of two methods is equal. RR is composed of excess profit, rent and interest expenses. In Korea, the magnitude of RR and profit is not different significantly.

Study on the Short Resistance and Shorting of Membrane of PEMFC (PEMFC 고분자 막의 Short 저항 및 Shorting에 관한 연구)

  • Oh, Sohyeong;Gwon, Jonghyeok;Lim, Daehyeon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.6-10
    • /
    • 2021
  • The shorting resistance (SR) of the PEMFC(Proton Exchange Membrane Fuel Cell) polymer membrane is an important indicator of the durability of the membrane. When SR decreases, shorting current (SC) increases, reducing durability and performance. When SR becomes less than about 0.1 kΩ·㎠, shorting occurs, the temperature rises rapidly, and MEA(Membrane Electrode Assembly) is burned to end stack operation. In order to prevent shorting, we need to control the SR, so the conditions affecting the SR were studied. There were differences in the SR measurement methods, and the SR measurement method, which improved the DOE(Department of Energy) and NEDO(New Energy and Industrial Technology Development Organization) method, was presented. It was confirmed that the SR decreases as the relative humidity, temperature and cell compression pressure increase. In the final stage of the accelerated durability evaluation process of the polymer membrane, SR rapidly decreased to less than 0.1 kΩ·㎠, and the hydrogen permeability became higher than 15 mA/㎠. After dismantling the MEA, SEM(Scanning Electron Microscope) analysis showed that a lot of platinum was distributed inside the membrane.