• Title/Summary/Keyword: Performance Enhanced Model

Search Result 600, Processing Time 0.027 seconds

Enhanced Normalized Subband Adaptive Filter with Variable Step Size (가변 스텝 사이즈를 가지는 개선된 정규 부밴드 적응 필터)

  • Chung, Ik Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.6
    • /
    • pp.518-524
    • /
    • 2013
  • In this paper, we propose a variable step size algorithm to enhance the normalized subband adaptive filter which has been proposed to improve the convergence characteristics of the conventional full band adaptive filter. The well-known Kwong's variable step size algorithm is simple, but shows better performance than that of the fixed step size algorithm. However, in case that large additive noise is present, the performance of Kwong's algorithm is getting deteriorated in proportion to the amount of the additive noise. We devised a variable step size algorithm which does not depend on the amount of additive noise by exploiting a normalized adaptation error which is the error subtracted and normalized by the estimated additive noise. We carried out a performance comparison of the proposed algorithm with other algorithms using a system identification model. It is shown that the proposed algorithm presents good convergence characteristics under both stationary and non-stationary environments.

Analysis of Behaviors of Concrete Strengthened with FRP Sheets and Steel Fibers Under Low-Velocity Impact Loading (저속 충격하중에서의 FRP Sheet 및 강섬유 보강 콘크리트의 거동 해석)

  • Lee, Jin Young;Kim, Mi Hye;Min, Kyung Hwan;Yoon, Young Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.155-164
    • /
    • 2011
  • In the case of impact loading test, measurement of the test data has difficulties due to fast loading velocity. In addition, the dynamic behaviors of specimens are distorted by ignoring local fracture. In this study, therefore, finite element analysis which considers local fracture and strain rate effect on impact load was performed by using LS-DYNA, an explicit analysis program. The one-way and two-way specimens strengthened with FRP Sheets and steel fibers were considered as analysis models. The results showed that the impact resistance of steel fiber reinforced concrete (SFRC) and ultra high performance concrete (UHPC) was enhanced. In the case of specimens strengthened with FRP Sheets, GFRP was superior to CFRP in the performance of impact resistance, and there was little effect of the FRP Sheet orientation. The reliability of this analysis model was verified by comparing with previous experimental results.

Development of An Integrated Optimal Design Program for Design of A High-Efficiency Low-Noise Regenerative Fan (재생형 송풍기의 고효율 저소음 설계를 위한 통합형 최적설계 프로그램 개발)

  • Heo, Man-Woong;Kim, Jin-Hyuk;Seo, Tae-Wan;Koo, Gyoung-Wan;Lee, Chung-Suk;Kim, Kwang-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.1
    • /
    • pp.35-40
    • /
    • 2014
  • A multi-objective optimization of a regenerative fan for enhancing the aerodynamic and aeroacoustic performance was carried out using an integrated fan design system, namely, Total FAN-Regen$^{(R)}$. The Total FAN-Regen$^{(R)}$ was developed for non-specialists to carry out a series of design process, viz., computational preliminary design, three-dimensional aerodynamic and aeroacoustic analyses, and design optimization, for a regenerative fan. An aerodynamic analysis of the regenerative fan was conducted by solving three-dimensional Reynolds-averaged Navier-Stokes equations using the shear stress transport turbulence model. And, an aeroacoustic analysis of the regenerative fan was implemented in a finite/infinite element method by solving the variational formulation of Lighthill's analogy based on the results of the unsteady flow analysis. An optimum shape obtained by Total FAN-Regen$^{(R)}$ shows the enhanced efficiency and decreased sound pressure level as much as 1.5 % and 20.0 dB, respectively, compared to those of the reference design. The performance test was carried out for an optimized regenerative fan to validate the performance of the numerically predicted optimal design.

Adaptive Packet Scheduling Scheme to Support Real-time Traffic in WLAN Mesh Networks

  • Zhu, Rongb;Qin, Yingying;Lai, Chin-Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.9
    • /
    • pp.1492-1512
    • /
    • 2011
  • Due to multiple hops, mobility and time-varying channel, supporting delay sensitive real-time traffic in wireless local area network-based (WLAN) mesh networks is a challenging task. In particular for real-time traffic subject to medium access control (MAC) layer control overhead, such as preamble, carrier sense waiting time and the random backoff period, the performance of real-time flows will be degraded greatly. In order to support real-time traffic, an efficient adaptive packet scheduling (APS) scheme is proposed, which aims to improve the system performance by guaranteeing inter-class, intra-class service differentiation and adaptively adjusting the packet length. APS classifies incoming packets by the IEEE 802.11e access class and then queued into a suitable buffer queue. APS employs strict priority service discipline for resource allocation among different service classes to achieve inter-class fairness. By estimating the received signal to interference plus noise ratio (SINR) per bit and current link condition, APS is able to calculate the optimized packet length with bi-dimensional markov MAC model to improve system performance. To achieve the fairness of intra-class, APS also takes maximum tolerable packet delay, transmission requests, and average allocation transmission into consideration to allocate transmission opportunity to the corresponding traffic. Detailed simulation results and comparison with IEEE 802.11e enhanced distributed channel access (EDCA) scheme show that the proposed APS scheme is able to effectively provide inter-class and intra-class differentiate services and improve QoS for real-time traffic in terms of throughput, end-to-end delay, packet loss rate and fairness.

Evaluation of Robust Performance of Fuzzy Supervisory Control Technique (퍼지관리제어기법의 강인성능평가)

  • Ok, Seung-Yong;Park, Kwan-Soon;Koh, Hyun-Moo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.5 s.45
    • /
    • pp.41-52
    • /
    • 2005
  • Using the variable control gain scheme on the basis of fuzzy-based decision-making process, Fuzzy supervisory control (FSC) technique exhibits better control performance than linear control technique with one static control gain. This paper demonstrates the effectiveness of the FSC technique by evaluating the robust performance of the FSC technique under the presence of uncertainties in the models and the excitations. Robust performance of the FSC system is compared with that of optimally designed LQG control system for the benchmark cable-stayed bridge presented by Dyke et al. Parameter studies on the robust performance evaluation are carried out by varying the stiffness of the bridge model as well as the magnitudes of several earthquakes with different frequency contents. From the comparative study of two control systems, FSC system shows the enhanced control performance against various magnitudes of several earthquakes while maintaining lower level of power required for controlling the bridge response. Especially, FSC system clearly guarantees the improved robust performance of the control system with stable reduction effects on the seismic responses and slight increases in total power and stroke for the control system, while LQG control system exhibits poor robust performance.

A Study on the Trade-Economic Effects and Utilization of AEO Mutual Recognition Agreements

  • LEE, Chul-Hun;HUH, Moo-Yul
    • The Journal of Industrial Distribution & Business
    • /
    • v.11 no.2
    • /
    • pp.25-31
    • /
    • 2020
  • Purpose: The AEO (Authorized Economic Operator) program, created in 2001 in the United States due to 9.11 terrorist's attack, fundamentally changed the trade environment. Korea, which introduced AEO program in 2009, has become one of the world's top countries in the program by ranking 6th in the number of AEO certified companies and the world's No. 1 in MRA (Mutual Recognition Agreement) conclusions. In this paper, we examined what trade-economic and non-economic effects the AEO program and its MRA have in Korea. Research design, data and methodology: In this study we developed a model to verify the impact between utilization of AEO and trade-economic effects of the AEO and its MRA. After analyzing the validity and reliability of the model through Structural Equation Model we conducted a survey to request AEO companies to respond their experience on the effects of AEO program and MRA. As a result, 196 responses were received from 176 AEO companies and utilized in the analysis. Results: With regard to economic effects, the AEO program and the MRA have not been directly linked to financial performance, such as increased sales, increased export and import volumes, reduced management costs, and increased operating profit margins. However, it was analyzed that the positive effects of supply chain management were evident, such as strengthening self-security, monitoring and evaluating risks regularly, strengthening cooperation with trading companies, enhancing cargo tracking capabilities, and reducing the time required for export and import. Conclusions: When it comes to the trade-economic effects of AEO program and its MRA, AEO companies did not satisfy with direct effects, such as increased sales and volume of imports and exports, reduced logistics costs. However, non-economic effects, such as reduced time in customs clearance, freight tracking capability, enhanced security in supply chain are still appears to be big for them. In a rapidly changing trade environment the AEO and MRA are still useful. Therefore the government needs to encourage non-AEO companies to join the AEO program, expand MRA conclusion with AEO adopted countries especially developing ones and help AEO companies make good use of AEO and MRA.

Video Coding Method Using Visual Perception Model based on Motion Analysis (움직임 분석 기반의 시각인지 모델을 이용한 비디오 코딩 방법)

  • Oh, Hyung-Suk;Kim, Won-Ha
    • Journal of Broadcast Engineering
    • /
    • v.17 no.2
    • /
    • pp.223-236
    • /
    • 2012
  • We develop a video processing method that allows the more advanced human perception oriented video coding. The proposed method necessarily reflects all influences by the rate-distortion based optimization and the human visual perception that is affected by the visual saliency, the limited space-time resolution and the regional moving history. For reflecting the human perceptual effects, we devise an online moving pattern classifier using the Hedge algorithm. Then, we embed the existing visual saliency into the proposed moving patterns so as to establish a human visual perception model. In order to realize the proposed human visual perception model, we extend the conventional foveation filtering method. Compared to the conventional foveation filter only smoothing less stimulus video signals, the developed foveation filter can locally smooth and enhance signals according to the human visual perception without causing any artifacts. Due to signal enhancement, the developed foveation filter more efficiently transfers the bandwidth saved at smoothed signals to the enhanced signals. Performance evaluation verifies that the proposed video processing method satisfies the overall video quality, while improving the perceptual quality by 12%~44%.

Flexural strengthening of RC one way solid slab with Strain Hardening Cementitious Composites (SHCC)

  • Basha, Ali;Fayed, Sabry;Mansour, Walid
    • Advances in concrete construction
    • /
    • v.9 no.5
    • /
    • pp.511-527
    • /
    • 2020
  • The main aim of the current research is to investigate the flexural behavior of the reinforced concrete (RC) slabs strengthened with strain hardening cementitious composites (SHCC) experimentally and numerically. Seven RC slabs were prepared and tested under four-points loading test. One un-strengthened slab considered as control specimen while six RC slabs were strengthened with reinforced SHCC layers. The SHCC layers had different reinforcement ratios and different thicknesses. The results showed that the proposed strengthening techniques significantly increased the ultimate failure load and the ductility index up to 25% and 22%, respectively, compared to the control RC slab. Moreover, a three dimensional (3D) finite element model was proposed to analyze the strengthened RC slabs. It was found that the results of the proposed numerical model well agreed with the experimental responses. The validated numerical model used to study many parameters of the SHCC layer such as the reinforcement ratios and the different thicknesses. In addition, steel connectors were suggested to adjoin the concrete/SHCC interface to enhance the flexural performance of the strengthened RC slabs. It was noticed that using the SHCC layer with thickness over 40 mm changed the failure mode from the concrete cover separation to the SHCC layer debonding. Also, the steel connectors prevented the debonding failure pattern and enhanced both the ultimate failure load and the ductility index. Furthermore, a theoretical equation was proposed to predict the ultimate load of the tested RC slabs. The theoretical and experimental ultimate loads are seen to be in fairly good agreement.

Development of a Nonlinear Concrete Model for Internally Confined Hollow Members Considering Confining Effects (구속효과를 고려한 내부 구속 중공 CFT 부재의 비선형 콘크리트 모델 개발)

  • Han, Taek Hee;Youm, Eung Jun;Han, Sang Yun;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.43-52
    • /
    • 2007
  • There is a growing range of applications for concrete-filled steel tube (CFT) member because of its superior performance. But a CFT member may be uneconomical or has weight problems because it is fully filled with concrete. In this study, a new type of member, called internally confined hollow (ICH) CFT member, was developed to solve the high cost and weight problems of the CFT member. To determine stress-strain model of the concrete in an ICH CFT column, possible failure modes of an ICH CFT column were suggested and confining pressure was derived from equilibriums for each failure mode. From the derived equations, a computer program was coded and parametric studies were performed for some examples. Analytical results showed that internally confined concrete has enhanced strength and ductility compared with those of unconfined or biaxially confined concrete.

Model-Based Architecture Design of the Range Safety Process for Live Fire Test with Enhanced Safety (실사격 시험 프로세스의 안전성 강화를 위한 MBSE 기반 아키텍처 연구)

  • Ye, Sung Hyuck;Lee, Jae-Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.2
    • /
    • pp.43-52
    • /
    • 2014
  • In weapon systems development, live fire tests have been frequently adopted to evaluate the performance of the systems under development. Therefore, it is necessary to ensure safety in the test ranges where the live fire tests can cause serious hazards. During the tests, a special care must be taken to protect the test and evaluation (T&E) personnel and also test assets from potential danger and hazards. Thus, the development and management of the range safety process is quite important in the tests of guided missiles and artillery considering the explosive power of the destruction. Note also that with a newly evolving era of weapon systems such as laser, EMP and non-lethal weapons, the test procedure for such systems is very complex. Therefore, keeping the safety level in the test ranges is getting more difficult due to the increased unpredictability for unknown hazards. The objective of this paper is to study on how to enhance the safety in the test ranges. To do so, an approach is proposed based on model-based systems engineering (MBSE). Specifically, a functional architecture is derived utilizing the MBSE method for the design of the range safety process under the condition that the derived architecture must satisfy both the complex test situation and the safety requirements. The architecture developed in the paper has also been investigated by simulation using a computer-aided systems engineering tool. The systematic application of this study in weapon live tests is expected to reduce unexpected hazards and test design time. Our approach is intended to be a trial to get closer to the recent theme in T&E community, "Testing at the speed of stakeholder's need and rapid requirement for rapid acquisition."