• Title/Summary/Keyword: Performance Degradation Model

Search Result 530, Processing Time 0.032 seconds

Aeroengine performance degradation prediction method considering operating conditions

  • Bangcheng Zhang;Shuo Gao;Zhong Zheng;Guanyu Hu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.9
    • /
    • pp.2314-2333
    • /
    • 2023
  • It is significant to predict the performance degradation of complex electromechanical systems. Among the existing performance degradation prediction models, belief rule base (BRB) is a model that deal with quantitative data and qualitative information with uncertainty. However, when analyzing dynamic systems where observable indicators change frequently over time and working conditions, the traditional belief rule base (BRB) can not adapt to frequent changes in working conditions, such as the prediction of aeroengine performance degradation considering working condition. For the sake of settling this problem, this paper puts forward a new hidden belief rule base (HBRB) prediction method, in which the performance of aeroengines is regarded as hidden behavior, and operating conditions are used as observable indicators of the HBRB model to describe the hidden behavior to solve the problem of performance degradation prediction under different times and operating conditions. The performance degradation prediction case study of turbofan aeroengine simulation experiments proves the advantages of HBRB model, and the results testify the effectiveness and practicability of this method. Furthermore, it is compared with other advanced forecasting methods. The results testify this model can generate better predictions in aspects of accuracy and interpretability.

Planning of Accelerated Degradation Tests: In the Case Where the Performance Degradation Characteristic Follows the Lognormal Distribution (성능특성치의 열화가 대수정규분포를 따를 때의 가속열화시험 모형 개발)

  • Lim, Heonsang;Sung, Si-Il
    • Journal of Applied Reliability
    • /
    • v.18 no.1
    • /
    • pp.80-86
    • /
    • 2018
  • Purpose: This article provides a mathematical model for the accelerated degradation test when the performance degradation characteristic follows the lognormal distribution. Method: For developing test plans, the total number of test units and the test time are determined based on the minimization of the asymptotic variance of the q-th quantile of the lifetime distribution at the use condition. Results: The mathematical model for the accelerated degradation test is provided. Conclusion: Accelerated degradation test method is widely used to evaluate the product lifetime within a resonable amount of cost and time. In this article. a mathematical model for the accelerated degradation test method is newly developed for this purposes.

Service Life Prediction of Components or Materials Based on Accelerated Degradation Tests (가속열화시험에 의한 부품·소재 사용수명 예측에 관한 연구)

  • Kwon, Young Il
    • Journal of Applied Reliability
    • /
    • v.17 no.2
    • /
    • pp.103-111
    • /
    • 2017
  • Purpose: Accelerated degradation tests can speed time to market and reduce the test time and costs associated with long term reliability tests to verify the required service life of a product or material. This paper proposes a service life prediction method for components or materials using an accelerated degradation tests based on the relationships between temperature and the rate of failure-causing chemical reaction. Methods: The relationship between performance degradation and the rate of a failure-causing chemical reaction is assumed and least square estimation is used to estimate model parameters from the degradation model. Results: Methods of obtaining acceleration factors and predicting service life using the degradation model are presented and a numerical example is provided. Conclusion: Service life prediction of a component or material is possible at an early stage of the degradation test by using the proposed method.

Development of Evaluation Model of Pumping and Drainage Station Using Performance Degradation Factors (농업기반시설물 양·배수장의 성능저하 요인분석 및 성능평가 모델 개발)

  • Lee, Jonghyuk;Lee, Sangik;Jeong, Youngjoon;Lee, Jemyung;Yoon, Seongsoo;Park, Jinseon;Lee, Byeongjoon;Lee, Joongu;Choi, Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.4
    • /
    • pp.75-86
    • /
    • 2019
  • Recently, natural disasters due to abnormal climates are frequently outbreaking, and there is rapid increase of damage to aged agricultural infrastructure. As agricultural infrastructure facilities are in contact with water throughout the year and the number of them is significant, it is important to build a maintenance management system. Especially, the current maintenance management system of pumping and drainage stations among the agricultural facilities has the limit of lack of objectivity and management personnel. The purpose of this study is to develop a performance evaluation model using the factors related to performance degradation of pumping and drainage facilities and to predict the performance of the facilities in response to climate change. In this study, we focused on the pumping and drainage stations belonging to each climatic zone separated by the Korea geographical climatic classification system. The performance evaluation model was developed using three different statistical models of POLS, RE, and LASSO. As the result of analysis of statistical models, LASSO was selected for the performance evaluation model as it solved the multicollinearity problem between variables, and showed the smallest MSE. To predict the performance degradation due to climate change, the climate change response variables were classified into three categories: climate exposure, sensitivity, and adaptive capacity. The performance degradation prediction was performed at each facility using the developed performance evaluation model and the climate change response variables.

Reliability Assessment of Anticorrosive Paints with Accelerated Degradation Test (가속열화시험에 의한 건축용 도료의 신뢰성 평가)

  • Kwon, Young-Il;Kim, Seung-Jin
    • Journal of Applied Reliability
    • /
    • v.9 no.4
    • /
    • pp.291-302
    • /
    • 2009
  • Accelerated and field degradation tests are performed for reliability assessment of an anticorrosive paint for steel structures. Test data were analyzed to obtain the degradation model and the life time distributions of the paint. A power law degradation model and lognormal performance distribution were used to predict the lifetime of the anticorrosive paint and the method of finding an acceleration factor is provided.

  • PDF

Research on aging-related degradation of control rod drive system based on dynamic object-oriented Bayesian network and hidden Markov model

  • Kang Zhu;Xinwen Zhao;Liming Zhang;Hang Yu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4111-4124
    • /
    • 2022
  • The control rod drive system is critical to the reactor's reliable operation. The performance of its control system and mechanical system will gradually deteriorate because of operational and environmental stresses, thus increasing the reactor's operational risk. Currently there are few researches on the aging-related degradation of the entire control rod drive system. Because it is difficult to quantify the effect of various environmental stresses and establish an accurate physical model when multiple mechanisms superimposed in the degradation process. Therefore, this paper investigates the aging-related degradation of a control rod drive system by integrating Dynamic Object-Oriented Bayesian Network and Hidden Markov Model. Uncertainties in the degradation of the control system and mechanical system are addressed by using fuzzy theory and the Hidden Markov Model respectively. A system which consists of eight control rod drive mechanisms divided into two groups is used to demonstrate the method. The aging-related degradation of the control rod drive system is analyzed by the Bayesian inference algorithm based on the accelerated life test data, and the impact of different operating schemes on the system performance is also investigated. Meanwhile, the components or units that have major impact on the system's performance are identified at different operational phases. Finally, several essential safety measures are suggested to mitigate the risk caused by the system degradation.

A Study on Reliability Prediction of System with Degrading Performance Parameter (열화되는 성능 파라메터를 가지는 시스템의 신뢰성 예측에 관한 연구)

  • Kim, Yon Soo;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.4
    • /
    • pp.142-148
    • /
    • 2015
  • Due to advancements in technology and manufacturing capability, it is not uncommon that life tests yield no or few failures at low stress levels. In these situations it is difficult to analyse lifetime data and make meaningful inferences about product or system reliability. For some products or systems whose performance characteristics degrade over time, a failure is said to have occurred when a performance characteristic crosses a critical threshold. The measurements of the degradation characteristic contain much useful and credible information about product or system reliability. Degradation measurements of the performance characteristics of an unfailed unit at different times can directly relate reliability measures to physical characteristics. Reliability prediction based on physical performance measures can be an efficient and alternative method to estimate for some highly reliable parts or systems. If the degradation process and the distance between the last measurement and a specified threshold can be established, the remaining useful life is predicted in advance. In turn, this prediction leads to just in time maintenance decision to protect systems. In this paper, we describe techniques for mapping product or system which has degrading performance parameter to the associated classical reliability measures in the performance domain. This paper described a general modeling and analysis procedure for reliability prediction based on one dominant degradation performance characteristic considering pseudo degradation performance life trend model. This pseudo degradation trend model is based on probability modeling of a failure mechanism degradation trend and comparison of a projected distribution to pre-defined critical soft failure point in time or cycle.

The Performance Degradation of Static Type Input Buffers due to Device Degradation (소자열화로 인한 Static 형 입력버퍼의 성능저하)

  • 김한기;윤병오
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.561-564
    • /
    • 1998
  • This paper describes a performance degradation of static type input buffer due to the device degradation in menory devices using $0.8\mu\textrm{m}$ CMOS process. experimental results shows that the degradation of MOS device affects the Trip Point shift in static type input buffer. We have performed the spice simulation and calculated the Trip Point with model parameter and measurement data so that how much the Trip Point(VLT) variate.

  • PDF

Service Life Prediction for Building Materials and Components with Stochastic Deterioration (추계적 열화모형에 의한 건설자재의 사용수명 예측)

  • Kwon, Young-Il
    • Journal of Korean Society for Quality Management
    • /
    • v.35 no.4
    • /
    • pp.61-66
    • /
    • 2007
  • The performance of a building material degrades as time goes by and the failure of the material is often defined as the point at which the performance of the material reaches a pre-specified degraded level. Based on a stochastic deterioration model, a performance based service life prediction method for building materials and components is developed. As a stochastic degradation model, a gamma process is considered and lifetime distribution and service life of a material are predicted using the degradation model. A numerical example is provided to illustrate the use of the proposed service life prediction method.

Incorporating Performance Degradation in Fault Tolerant Control System Design with Multiple Actuator Failures

  • Zhang, Youmin;Jiang, Jin;Theilliol, Didier
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.327-338
    • /
    • 2008
  • A fault tolerant control system design technique has been proposed and analyzed for managing performance degradation in the presence of multiple faults in actuators. The method is based on a control structure with a model reference reconfigurable control design in an inner loop and command input adjustment in an outer loop. The reduced dynamic performance requirements in the presence of different actuator faults are accounted for through different performance reduced (degraded) reference models. The degraded steady-state performances are governed by the reduced levels of command input. The reconfigurable controller is designed on-line automatically in an explicit model reference control framework so that the dynamics of the closed-loop system follow that of the performance reduced reference model under each fault condition. The reduced command input level is determined to prevent potential actuator saturation. The proposed method has been evaluated and analyzed using an aircraft example against actuator faults subject to constraints on the magnitude and slew-rate of actuators.