Journal of the Korea Society of Computer and Information
/
v.15
no.8
/
pp.1-11
/
2010
Many applications of DSMS(Data Stream Management System) require not only to process real-time stream data efficiently but also to provide high quality services such as data mining and data warehouse combining with DBMS(Database Management System) to users. In this paper we execute the performance benchmark of the combined system of DSMS and DBMS that is developed for high quality services. We use the stream data of network monitoring application system and combine the traditional representative DSMSs and DBMSs in a single system for the performance testing. We develop the total performance benchmark tool implementing JAVA language for the our testing. For our performance testing, we combine DSMS such as STREAM and Coral8 and DBMS such MySQL and Oracle10g respectively.
The performance test is conducted for the purpose of determining the accurate thermal performance of the power generation facility or deriving the factors of thermal efficiency degradation. Compared to the acquisition method of power plant thermal performance test data by compensating cable or transmission cable, performance test using wireless instrument can acquire digital data in order to shorten the period due to installation and demolition of instrument and enhance safety of workers and relatively accurate data can be acquired thereby improving work efficiency. Wireless instruments have already been introduced to the market a long time ago, and some of them are used in industry such as petrochemical industry. However, there is no example which has been conducted for performance test of power generation facilities. In order to apply power generation facilities, a reliable system capable of acquiring performance data smoothly without affecting the control system is required. The wireless measurement system can eliminate the measurement defects and errors such as the damage due to the movement of the connecting cable, the extension due to the extension of the shield wire, the contact failure at the contact point between the measuring sensor and the connecting wire, This method has the advantage of collecting relatively accurate performance test data.
HERMAWATI, Adya;ANAM, Choirul;SUWARTA, Suwarta;WARDHANI, Arie Restu
The Journal of Asian Finance, Economics and Business
/
v.9
no.8
/
pp.29-36
/
2022
The objective of this research is to find out the effect of innovative culture and quality of work life on competitive advantage strategy with the mediation of individual performance. This research is the continuance of previous research conducted by Adya Hermawati with an originality aspect emphasizing a concept comprising innovative culture, quality of work life, and individual performance as factors that control competitive advantage strategy. The research subject is Tourism Industry SMEs. Explanatory research is a research method used in this study, by surveying respondents. The data sources in this research are primary and secondary. Primary data is collected from respondents directly through a questionnaire whereas secondary data are obtained from references that are relevant to research problems. In conformity with this explanation, the type of research data is quantitative data. The results of this research show that: innovative culture has an effect on individual performance, quality of work life affects individual performance, innovative culture has an effect on competitive advantage, quality of work life affects competitive advantage, individual performance has an effect on competitive advantage, innovative culture affects competitive advantage with the mediation of individual performance, and quality of work life affects competitive advantage with the mediation of individual performance.
This study investigated the relationships between the analytics capability and value of big data and business performance for big data analysts of business organizations. The values that big data can bring were categorized into transactional value, strategic value, transformational value, and informational value, and we attempted to verify whether these values lead to business performance. Two hundred samples from employees with experience in big data analysis were collected and analyzed. The hypotheses were tested with a structural equation model, and the capability of big data analytics was found to have a significant effect on the value and business performance of big data. Among the big data values, transactional value, strategic value, and transformational value had a positive effect on business performance, but the impact of informational value has not been proven. The results of this study are expected to provide useful information to business organizations seeking to achieve business performance using big data.
Journal of information and communication convergence engineering
/
v.7
no.1
/
pp.35-40
/
2009
Many researchers strive to research on ways on how to improve the performance of RFID system and many papers were written to solve one of the major drawbacks of potent technology related with data management. As RFID system captures billions of data, problems arising from dirty data and large volume of data causes uproar in the RFID community those researchers are finding ways on how to address this issue. Especially, effective data management is important to manage large volume of data. Data reduction techniques in attempts to address the issues on data are also presented in this paper. This paper introduces readers to a new data reduction algorithm that might be an alternative to reduce data in RFID Systems. A process on how to extract data from the reduced database is also presented. Performance study is conducted to analyze the new data reduction algorithm. Our performance analysis shows the utility and feasibility of our categorization reduction algorithms.
The Journal of Asian Finance, Economics and Business
/
v.10
no.2
/
pp.109-121
/
2023
This study aims to address the literature gap by examining the direct relationship between big data analytics capability, marketing innovation, and organizational innovations. Additionally, this study would examine big data analytics capability as the antecedent for both innovation types and how these relationships influence firm performance. The research model is developed based on the integration of resource-based view and knowledge-based view theories. The quantitative method is used as the research methodology for this study. Based on a purposive sampling method, a total of 115 questionnaires were obtained from managers in star-rated hotels located in Malaysia. Partial least square structural equation modeling (PLS-SEM) is utilized for the data analysis. The result shows that big data analytics capability positively affects marketing and organizational innovations. The findings show that big data analytics capability and organizational innovation positively influence firm performance. Nonetheless, the result revealed that marketing innovation is not positively related to firm performance. The findings also indicate to hotel managers the importance of big data analytic capability and the resources required to build and develop this capability. The contributions from this study enrich the literature on big data and innovation, which is particularly limited in the hospitality and tourism context.
Kim, Bongjae;Jung, Jinman;Min, Hong;Heo, Junyoung;Jung, Hyedong
KIISE Transactions on Computing Practices
/
v.23
no.5
/
pp.293-298
/
2017
Recently, much research has been devoted to implementing and provisioning high-performance computing environment using clusters with multiple computers and high-performance networking technologies. In-memory based Key-Value stores, such as Redis or Memcached, are widely used in high performance cluster environments to improve the data processing performance. We can distribute data at different storage nodes, and each computing node can access it at a high speed using these In-memory based Key-Value stores. InfiniBand is a de-facto technology that is widely used to interconnect each node of a cluster. In this paper, we propose a new data pre-fetching scheme for Key-Value store based on high performance clusters to improve the performance. The proposed scheme utilizes the data transfer characteristics of InfiniBand. The results of the simulation show that the proposed scheme can reduce the data transfer time by up to about 28%.
Purpose - This study aims to examine how the time variations of customer satisfaction influence retail firms' performance. Research design, data, and methodology - The study employs yearly time series customer satisfaction data of Korean retail secured from the National Customer Satisfaction Index(NCSI) for the 2011~2016 period. Our data includes a total of 90 observations of 15 retail firms in 5 different sector(department store, filling station, large discount store, open market, TV home shopping). We obtained the firm performance data from the KIS Value database. The variables for financial performance include sales and net profit. Results - The results show that customer satisfaction has dynamic effects on retail firms' performance. More specifically, the time variation of customer satisfaction has the moderating effect on the linkage between customer satisfaction and financial performance as well as direct effects on the firms' financial performance. Conclusions - Customer satisfaction has the current effect lasting over time on firm performance and changes of customer satisfaction in positive direction also impact on firm performance. Retail firms need to not only focus on improving customer satisfaction in the current term, but make efforts to continuously enhance customer satisfaction in the long term.
Machine learning (ML) is a method of fitting given data to a mathematical model to derive insights or to predict. In the age of big data, where the amount of available data increases exponentially due to the development of information technology and smart devices, ML shows high prediction performance due to pattern detection without bias. The feature engineering that generates the features that can explain the problem to be solved in the ML process has a great influence on the performance and its importance is continuously emphasized. Despite this importance, however, it is still considered a difficult task as it requires a thorough understanding of the domain characteristics as well as an understanding of source data and the iterative procedure. Therefore, we propose methods to apply deep learning for solving the complexity and difficulty of feature extraction and improving the performance of ML model. Unlike other techniques, the most common reason for the superior performance of deep learning techniques in complex unstructured data processing is that it is possible to extract features from the source data itself. In order to apply these advantages to the business problems, we propose deep learning based methods that can automatically extract features from transaction data or directly predict and classify target variables. In particular, we applied techniques that show high performance in existing text processing based on the structural similarity between transaction data and text data. And we also verified the suitability of each method according to the characteristics of transaction data. Through our study, it is possible not only to search for the possibility of automated feature extraction but also to obtain a benchmark model that shows a certain level of performance before performing the feature extraction task by a human. In addition, it is expected that it will be able to provide guidelines for choosing a suitable deep learning model based on the business problem and the data characteristics.
The purpose of this study is to propose the performance measurement model for open big data platform. In order to develop the performance measurement model, we have integrated big data reference architecture(NIST 2018) with performance prism model(Neely et al. 2001) in the platform perspective of open big data. Our proposed model consists of five key building blocks for measuring performance of open data platform as follows: stakeholder contribution, big data governance capabilities, big data service capabilities, big data IT capabilities, and stakeholder satisfaction. In addition, our proposed model have twenty four evaluation indices and seventy five measurement items. We believe that our model could offer both research and practical implications for relevant research.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.