• Title/Summary/Keyword: Performance Control

Search Result 25,332, Processing Time 0.049 seconds

Differential Evolution Approach for Performance Enhancement of Field-Oriented PMSMs

  • Yun, Hong Min;Kim, Yong;Choi, Han Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2301-2309
    • /
    • 2018
  • In a field-oriented vector-controlled permanent magnet synchronous motor (PMSM) control system, the d-axis current control loop can offer a free degree of freedom which can be used to improve control performances. However, in the industry the desired d-axis current command is usually set as zero without using the free degree of freedom. This paper proposes a method to use the degree of freedom for control performance improvement. It is assumed that both the inner loop proportional-integral (PI) current controller and the q-axis outer loop PI speed controller are tuned by the well-known tuning rules. This paper gives an optimal d-axis reference current command generator such that some useful performance indexes are minimized and/or a tradeoff between conflicting performance criteria is made. This paper uses a differential evolution algorithm to autotune the parameter values of the optimal d-axis reference current command generator. This paper implements the proposed control system in real time on a Texas Instruments TMS320F28335 floating-point DSP. This paper also gives experimental results showing the practicality and feasibility of the proposed control system, along with simulation results.

The Performance Improvement of Excitation System using Robust Control with DATABASE

  • Hong, Hyun-Mun;Jeon, Byeong-Seok;Kim, Jong-Gun;Lee, Sang-Hyuk
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.83-87
    • /
    • 2005
  • This paper deals with the design and evaluation of the robust controller for a synchronous generator excitation system to improve the steady state and transient stability. The nonlinear characteristics of the system is treated as model uncertainties, and then the robust control techniques are introduced into the power system stability design to take into account these uncertainties at the controller design stage. The performance of the designed controller is examined by extensive non-linear time domain simulation. It is shown that the performance of the robust controller is superior to that of the conventional PI controller. This paper also proposes an improved digital exciter control system for a synchronized generator using a digitally designed controller with database. Results show that the proposed control system manifests excellent control performance compared to existing control systems. It has also been confirmed that it is easy for the proposed control system to implement digital control.

Development of Active Intake Noise Control Algorithm for Improvement Control Performance under Rapid Acceleration and Disturbance (L-Point Running Average Filter를 이용한 급가속 흡기계의 능동소음제어 성능향상을 위한 알고리즘 개발)

  • 전기원;조용구;오재응;이정윤
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.780-783
    • /
    • 2004
  • Recently Intake noise has been extensively studied to reduce the engine noise. In order to diminish intake noise several resonators were added to the intake system. However this can cause a reduction of engine output power and an increase of fuel consumption. In this study, active noise control simulation of the Filtered-x LMS algorithm is applied real instrumentation intake noise data under rapid acceleration because intake noise is more excessively increased under the such a harsh condition. But the FXLMS algorithm has poor control performance when the system is disturbed. Thus modified FXLMS algorithm using L-point running average filter is developed to improve the control performance under the rapid acceleration and disturbance. The noise reduction quantity of modified Filtered-x LMS algorithm is more than original one in two cases. In the case of control for real instrumentation intake noise data, maximum residual noise of modified FXLMS algorithm is 2.5 times less than applied the FXLMS and also in the case of disturbed, the modified FXLMS algorithm shows excellent control performance but FXLMS algorithm cat not control.

  • PDF

An Adaptive Fuzzy Current Controller with Neural Network For Field-Oriented Controller Induction Machine

  • Lee, Kyu-Chan;Lee, Hahk-Sung;Cho, Kyu-Bock;Kim, Sung-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.227-230
    • /
    • 1993
  • Recently, the development of novel control methodology enables us to improve the performance of AC-machine drives by using pulse width modulation (PWM) technique. Usually, the dynamic characteristic of induction motor (IM) has been represented by the 5-th order nonlinear differential equation. This dynamics, however, can be reduced to 3-rd order dynamics by applying direct control of IM input current. This methodology concludes that it is much easier to control IM by means of the field-oriented methods employing the current controller. Therefore a precise current control is crucial to achieve a high control performance both in dynamic and steady state operations. This paper presents an adaptive fuzzy current controller with artificial neural network (ANN) for field-oriented controlled IM. This new control structure is able to adaptively minimize a current ripple while maintaining constant switching frequency. Especially the proposed controller employs neuro-computing philosophy as well as adaptive learning pattern recognizing principles with respect to variations of the system parameters. The proposed approach is applied to the IM drive system, and its performance is tested through various simulations. Simulation results show that the proposed system, compared among several known classical methods, has a superb performance.

  • PDF

A Fitness between CEO Characteristics and Management Control (CEO특성과 경영통제간의 적합성에 관한 연구)

  • Jung, Jae-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.7
    • /
    • pp.457-467
    • /
    • 2014
  • In order to improve organization performance by CEO's leadership, the control systems have to be designed in accordance with CEO's strategic orientation. A management control systems (MCS) is a system which gathers and uses information to evaluate the performance of different organizational resources like human, physical, financial and also the organization as a whole considering the organizational strategies. The current study is conducted with the objective to explore the effects of CEO's Characteristics (Risk-taking tendency, and Achievement motivation) and control types (Behavioral control, and Result control) on organization performance. The characteristics of ceo - behavior control and risk-taking propensity - results in significantly positive effect on management control. On the other hand, risk-taking propensity has influence negatively on behavior control. The behavioral control is received negative influence from risk-taking propensity. and it received positive influence from motivation. and then it has effect on organization performance(indirct effect). To achieve the purpose of this study, Structural Equation Model (SEM) has been applied.

Multivariable QLQC/LTR depth control of underwater vehicles with deadzone (사역대를 갖는 수중운동체의 다변수 QLQG/LTR 심도제어)

  • 한성익;김종식;최중락
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.179-184
    • /
    • 1993
  • In general, for underwater vehicles in low speed, depthkeeping operations are carried out by using the variation of the weight in the seaway tank. The depthkeeping control of underwater vehicles is difficult because of the deadzone effect in the flow rate control valve. In this paper, the nonlinear multivariable QLQG/LTR control system using a seaway tank and bow planes is synthesized in order to improve the performance of the depth control system. The computer simulation results show the multivariable QLQG/LTR control system has good depth control performance under the deadzone effect.

  • PDF

Adaptive fuzzy sliding mode control for nonlinear systems (비선형 계통에 대한 적응 퍼지 슬라이딩 모드 제어)

  • 서삼준;서호준;김동식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.684-688
    • /
    • 1996
  • In this paper, to overcome drawbacks of variable structure control system a self-tuning fuzzy sliding mode control algorithm using gradient descent method is proposed. The proposed method has the characteristics which are viewed in conventional VSC, e.g. insensitivity to a class of disturbance, parameter variations and uncertainties in the sliding mode. To demonstrate its performance, the proposed control algorithm is applied to a one-degree of freedom robot arm. The results show that both alleviation of chattering and performance are achieved.

  • PDF

Adaptive Control based on a ParametricAffine Model for tail-control led Missiles (매개변수화 어파인 모델에 기반한 꼬리날개 제어유도탄의 적응제어)

  • 최진영;좌동경
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.2-2
    • /
    • 2000
  • This paper presents an adaptive control against uncertainties in tail-controlled STT (skid-to-Turn) missiles. First, we derive an analytic uncertainty model from a parametricaffine missile model developed by the authors. Based on this analytic model, an adaptive feedbacklinearizing control law accompanied by a sliding model control law is proposed. We provide analyses of stability and output tracking performance of the overall adaptive missile system. The performance and validity of the proposed adaptive control scheme is demonstrated by simulation.

  • PDF

High Performance Control of Induction Motor Drive using Multi Adaptive Fuzzy Controller (다중 적응 퍼지제어기를 이용한 유도전동기 드라이브의 고성능 제어)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.10
    • /
    • pp.59-68
    • /
    • 2009
  • The field oriented control of induction motors is widely used in high performance applications. However, detuning caused by parameter disturbance still limits the performance of these drives. In order to accomplish variable speed operation, conventional PI-like controllers are commonly used. These controllers provide limited good performance over a wide range of operation, even under ideal field oriented conditions. This paper is proposed high performance control of induction motor drive using multi adaptive fuzzy controller. This controller has been performed for speed control with fuzzy adaptation mechanism (FAM)-PI, current control with model reference adaptive fuzzy control(MFC) and estimation of speed using ANN. The proposed control algorithm is applied to induction motor drive system using FAM-PI, MFC and ANN controller. The performance of proposed controller is evaluated by analysis for various operating conditions using parameters of induction motor drive. Also, this paper is proposed the analysis results to verify the effectiveness of this controller.

Thermal Performance Evaluation of Solar Hot Water System according to Flow Rate Control (유량제어방식에 따른 태양열 급탕시스템의 열성능 평가)

  • Baek, Nam-Choon;Shin, U-Cheul
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.5
    • /
    • pp.140-145
    • /
    • 2011
  • In this study, the performance and behavior of solar heating system according to the system control scheme, variable flow control (proportional control) and constant flow control (on-off control) was carried out by experiment. The on-off control is used generally for solar thermal system by now. But the proportional control is used for the solar district heating system which is supplied the higher temperature of water than that of desired. The proportional control logic that pump speed is varied in an attempt to maintain a specified outlet temperature of solar heating system was developed and tested for the use widely for the small and medium solar thermal system. The results are as following. First, the proportional controller which is made here could be adopted the characteristics for setting temperature control. Second, the proportional control is better than the on-off control in the side of the performance of thermal stratification in storage tank. Third, the operating energy(electricity consumption by pump) of solar thermal system can be saved more than 60% using the proportional control comparing to the on-off control.