• 제목/요약/키워드: Performance Bias

Search Result 983, Processing Time 0.027 seconds

Impact of Diverse Configuration in Multivariate Bias Correction Methods on Large-Scale Climate Variable Simulations under Climate Change

  • de Padua, Victor Mikael N.;Ahn Kuk-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.161-161
    • /
    • 2023
  • Bias correction of values is a necessary step in downscaling coarse and systematically biased global climate models for use in local climate change impact studies. In addition to univariate bias correction methods, many multivariate methods which correct multiple variables jointly - each with their own mathematical designs - have been developed recently. While some literature have focused on the inter-comparison of these multivariate bias correction methods, none have focused extensively on the effect of diverse configurations (i.e., different combinations of input variables to be corrected) of climate variables, particularly high-dimensional ones, on the ability of the different methods to remove biases in uni- and multivariate statistics. This study evaluates the impact of three configurations (inter-variable, inter-spatial, and full dimensional dependence configurations) on four state-of-the-art multivariate bias correction methods in a national-scale domain over South Korea using a gridded approach. An inter-comparison framework evaluating the performance of the different combinations of configurations and bias correction methods in adjusting various climate variable statistics was created. Precipitation, maximum, and minimum temperatures were corrected across 306 high-resolution (0.2°) grid cells and were evaluated. Results show improvements in most methods in correcting various statistics when implementing high-dimensional configurations. However, some instabilities were observed, likely tied to the mathematical designs of the methods, informing that some multivariate bias correction methods are incompatible with high-dimensional configurations highlighting the potential for further improvements in the field, as well as the importance of proper selection of the correction method specific to the needs of the user.

  • PDF

Influence of Substrate Bias Voltage on the Electrical and Optical Properties of IWO Thin Films (기판 인가 전압에 따른 IWO 박막의 전기적, 광학적 특성)

  • Jae-Wook Choi;Yeon-Hak Lee;Min-Sung Park;Young-Min Kong;Daeil Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.9
    • /
    • pp.372-376
    • /
    • 2023
  • Transparent conductive tungsten (W) doped indium oxide (In2O3; IWO) films were deposited at different substrate bias voltage (-Vb) conditions at room temperature on glass substrates by radio frequency (RF) magnetron sputtering and the influence of the substrate bias voltage on the optical and electrical properties was investigated. As the substrate bias voltage increased to -350 Vb, the IWO films showed a lower resistivity of 2.06 × 10-4 Ωcm. The lowest resistivity observed for the film deposited at -350 Vb could be attributed to its higher mobility, of 31.8 cm2/Vs compared with that (6.2 cm2/Vs) of the films deposited without a substrate bias voltage (0 Vb). The highest visible transmittance of 84.1 % was also observed for the films deposited at the -350 Vb condition. The X-ray diffraction observation indicated the IWO films deposited without substrate bias voltage were amorphous phase without any diffraction peaks, while the films deposited with bias voltage were polycrystalline with a low In2O3 (222) diffraction peak and relatively high intensity (431) and (046) diffraction peaks. From the observed visible transmittance and electrical properties, it is concluded that the opto-electrical performance of the polycrystalline IWO film deposited by RF magnetron sputtering can be enhanced with effective substrate bias voltage conditions.

Performance Enhancement of Hybrid Doherty Amplifier using Drain bias control (Drain 바이어스 제어를 이용한 Hybrid Doherty 증폭기의 성능개선)

  • Lee Suk-Hui;Lee Sang-Ho;Bang Sung-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.5 s.347
    • /
    • pp.128-136
    • /
    • 2006
  • In this paper, design and implement 50W Doherty power amplifiers for 3GPP repeater and base station transceiver system. Efficiency improvement and high power property of ideal Doherty power amplifier is distinguishable; however bias control for implementation of Doherty(GDCHD) amplifier is difficult. To solve the problem, therefore, GDCHD(Gate and Drain Control Hybrid Doherty) power amplifier is embodied to drain bias adjustment circuit to Doherty power amplifier with gate bias adjustment circuit. Experiment result shows that $2.11{\sim}2.17\;GHz$, 3GPP operating frequency band, with 57.03 dB gain, PEP output is 50.30 dBm, W-CDMA average power is 47.01 dBm, and -40.45 dBc ACLR characteristic in 5MHz offset frequency band. Each of the parameter satisfied amplifier specification which we want to design. Especially, GDCHD power amplifier shows proper efficiency performance improvement in uniformity ACLR than Doherty power amplifier.

A Study on Fabrication and Performance Evaluation of Wideband Receiver using Bias Stabilized Resistor for the Satellite Mobile Communications System (바이어스 안정화 저항을 이용한 이동위성 통신용 광대역 수신단 구현 및 성능 평가에 관한 연구)

  • 전중성;김동일;배정철
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.3
    • /
    • pp.569-577
    • /
    • 1999
  • A wideband RF receiver for satellite mobile communications system was fabricated and evaluated of performance in low noise amplifier and high gain amplifier. The low noise amplifier used to the resistive decoupling and self-bias circuits. The low noise amplifier is fabricated with both the RF circuits and the self-bias circuits. Using a INA-03184, the high gain amplifier consists of matched amplifier type. The active bias circuitry can be used to provide temperature stability without requiring the large voltage drop or relatively high-dissipated power needed with a bias stabilized resistor. The bandpass filter was used to reduce a spurious level. As a result, the characteristics of the receiver implemented here show more than 55 dB in gain, 50.83 dBc in a spurious level and less than 1.8 : 1 in input and output voltage standing wave ratio(VSWR), especially the carrier to noise ratio is a 43.15 dB/Hz at a 1 KHz from 1537.5 MHz.

  • PDF

Attention and Memory Bias to threatened stimuli in Individuals with High Social Anxiety (고 사회 불안 성인의 위협 자극에 대한 주의 및 기억 편향)

  • Jin-Ah Park;So-Yeon Kim
    • Science of Emotion and Sensibility
    • /
    • v.27 no.2
    • /
    • pp.113-126
    • /
    • 2024
  • Individuals with social anxiety disorders tend to hold attentional bias toward threatening stimuli in social contexts regardless of task relevance. Although attentional bias is relatively consistent, findings on memory performance are mixed. This study examined attentional and memory biases toward threat stimuli in individuals with high levels of social anxiety. Participants included 19 individuals with high social anxiety (HSA) and another 20 individuals with low social anxiety (LSA). They performed a continuous attention task to measure attentional bias to threat. Afterward, they performed an unexpected memory task using distracting stimuli from the previous attention task to measure memory bias to task-irrelevant threatening stimuli. The results indicated that the HSA and LSA groups exhibited an initial attentional bias toward emotional faces. However, only the HSA group displayed prolonged attentional bias and demonstrated memory bias toward angry faces. Conversely, the LSA group exhibited attentional bias toward happy faces after 4 s. The findings imply that the absence of bias toward positive stimuli and the presence of bias toward negative stimuli may contribute to the maintenance and severity of social anxiety pathology.

Performance Enhancement of 3-way Doherty Power Amplifier using Gate and Drain bias control (Gate 및 Drain 바이어스 제어를 이용한 3-way Doherty 전력증폭기와 성능개선)

  • Lee, Kwang-Ho;Lee, Suk-Hui;Bang, Sung-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.1
    • /
    • pp.77-83
    • /
    • 2011
  • In this thesis, 50W Doherty amplifier was designed and implemented for Beyond 3G's repeater and base-station. Auxiliary amplifier of doherty amplifier was implemented by Gate bias control circuit. Though gate bias control circuit solved auxiliary's bias problem, output characteristics of doherty amplifier was limited. To enhance the output characteristic relativize Drain control circuit And To improve power efficiency make 3-way Doherty power amplifier. therefore, 3-way GDCD (Gate and Drain bias Control Doherty) power amplifier is embodied to drain bias circuit for General Doherty power amplifier. The 3-way GDCD power amplifier composed of matching circuit with chip capacitor and micro strip line using FR4 dielectric substance of specific inductive capacity(${\varepsilon}r$) 4.6, dielectric substance height(H) 30 Mills, and 2.68 Mills(2 oz) of copper plate thickness(T). Experiment result satisfied specification of amplifier with gains are 57.03 dB in 2.11 ~ 2.17 GHz, 3GPP frequency band, PEP output is 50.30 dBm, W-CDMA average power is 47.01 dBm, and ACLR characteristics at 5MHz offset frequency band station is -40.45 dBc. Especially, 3-way DCHD power amplifier showed excellence efficiency performance improvement in same ACLR than general doherty power amplifier.

Analyses of temperature change of a u-bolometer in Focal Plane Array with CTIA bias cancellation circuit (CTIA 바이어스 상쇄회로를 갖는 초점면 배열에서 마이크로 볼로미터의 온도변화 해석)

  • Park, Seung-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2311-2317
    • /
    • 2011
  • In this paper, we study the temperature change of a ${\mu}$-bolometer focal plane array with a capacitive transimpedance amplifier bias cancellation circuit. Thermal analysis is essential to understand the performance of a ${\mu}$-bolometer focal plane array, and to improve the temperature stability of a focal plane array characteristics. In this study, the thermal analyses of a ${\mu}$-bolometer and its two reference detectors are carried out as a function of time. The analyses are done with the $30{\mu}m$ pitch $320{\times}240$ focal plane array operating of 60 Hz frame rate and having a columnwise readout. From the results, the temperature increase of a ${\mu}$-bolometer in FPA by an incident IR is estimated as $0.689^{\circ}C$, while the temperature increase by a pulsed bias as $7.1^{\circ}C$, which is about 10 times larger than by IR. The temperature increase of a reference detector by a train of bias pulses may be increased much higher than that of an active ${\mu}$-bolometer. The suppression of temperature increase in a reference bolometer can be done by increasing the thermal conductivity of the reference bolometer, in which the selection of thermal conductivity also determines the range of CTIA output voltage.

Investigation of bias illumination stress in solution-processed bilayer metal-oxide thin-film transistors

  • Lee, Woobin;Eom, Jimi;Kim, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.302.1-302.1
    • /
    • 2016
  • Solution-processed amorphous metal-oxide thin-film transistors (TFTs) are considered as promising candidates for the upcoming transparent and flexible electronics due to their transparent property, good performance uniformity and possibility to fabricate at a low-temperature. In addition, solution processing metal oxide TFTs may allow non-vacuum fabrication of flexible electronic which can be more utilizable for easy and low-cost fabrication. Recently, for high-mobility oxide TFTs, multi-layered oxide channel devices have been introduced such as superlattice channel structure and heterojunction structure. However, only a few studies have been mentioned on the bias illumination stress in the multi- layered oxide TFTs. Therefore, in this research, we investigated the effects of bias illumination stress in solution-processed bilayer oxide TFTs which are fabricated by the deep ultraviolet photochemical activation process. For studying the electrical and stability characteristics, we implemented positive bias stress (PBS) and negative bias illumination stress (NBIS). Also, we studied the electrical properties such as field-effect mobility, threshold voltage ($V_T$) and subthreshold slop (SS) to understand effects of the bilayer channel structure.

  • PDF

Improvement of Sensing Performance on Nasicon Amperometric NO2 Sensors (나시콘 전류검출형 NO2 센서의 성능개선)

  • Kim, Gwi-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.912-917
    • /
    • 2007
  • Many electrochemical power devices such as solid state batteries and solid oxide fuel cell have been studied and developed for solving energy and environmental problems. An amperometric gas sensor usually generates sensing signal of electric current along the proportion of the concentration of target gas under the condition of limiting current. For narrow variations of gas concentration, the amperometric gas sensor can show higher precision than a potentiometric gas sensor does. In additional, cross sensitivities to interfering gases can possibly be mitigated by choosing applied voltage and electrode materials properly. In order to improve the sensitivity to $NO_2$, the device was attached with Au reference electrode to form the amperometric gas sensor device with three electrodes. With the fixed bias voltage being applied between the sensing and counter electrodes, the current between the sensing and reference electrodes was measured as a sensing signal. The response to $NO_2$ gas was obviously enhanced and suppressed with a positive bias, respectively, while the reverse current occurred with a negative bias. The way to enhance the sensitivity of $NO_2$ gas sensor was thus realized. It was shown that the response to $NO_2$ gas could be enhanced sensitivity by changing the bias voltage.

A Numerical Study on Temperature Prediction Bias using FDS in Simulated Thermal Environments of Fire (모사된 화재의 열적환경에서 FDS를 이용한 온도 예측오차에 관한 수치해석 연구)

  • Han, Ho-Sik;Kim, Bong-Jun;Hwang, Cheol-Hong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.14-20
    • /
    • 2017
  • A numerical study was conducted to identify the predictive performance for the bare-bead thermocouple (TC) using FDS (Fire Dynamics Simulator) in simulated thermal environments of fire. A relative prediction bias of TC temperature calculated from reverse-radiation correction by FDS was evaluated with the comparison of previous experimental data. As a result, it was identified that the TC temperatures predicted by FDS were lower than the temperatures measured by bare-bead TC for the ranges of heat flux and gas temperature considered. The relative prediction bias of TC temperature by FDS was gradually increased with the increase in radiative heat flux and also significantly increased with the decrease in the gas temperature. Quantitatively, at the gas temperature of $20^{\circ}C$, the TC temperature predicted by FDS had the relative bias of approximately -20% with the radiative heat flux of $20kW/m^2$ corresponding to thermal radiation level of the flashover. It is predicted from the present study that more accurate validation of fire modeling will be possible with the quantitative prediction bias occurred in the process of reverse-radiation correction of temperature predicted by FDS.