• Title/Summary/Keyword: Perforated caisson

Search Result 28, Processing Time 0.025 seconds

Experimental Study on Hydraulic Performance of Perforated Caisson Breakwater with Turning Wave Blocks (회파블록케이슨 방파제의 수리학적 성능에 관한 실험적 연구)

  • Kim, In-Chul;Park, Ki-Chul
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.61-67
    • /
    • 2019
  • Recently, a perforated caisson breakwater with turning wave blocks was developed to improve the water affinity and public safety of a rubble mound armored by TTP. In this study, hydraulic model tests were performed to examine the hydraulic performance of a non-porous caisson and new caisson breakwater with perforated blocks for attacking waves in a small fishery harbor near Busan. The model test results showed that the new caisson was more effective in dissipating the wave energy under normal wave conditions and in reducing the wave overtopping rates under design wave conditions than the non-porous caisson. It was found that the horizontal wave forces acting on the perforated caisson were slightly larger than those on the non-porous caisson because of the impulsive forces on the caisson with the turning wave blocks.

Pressure Distribution and Caisson Stability of Perforated Breakwaters (유공 방파제의 파압분포특성과 안정도)

  • 전인식;박우선;이달수
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.2
    • /
    • pp.66-75
    • /
    • 1993
  • Hydraulic experiments were performed in order to gain an insight into the quantitative differences between the perforated wall caisson and its solid wall counterpart in the local pressure distribution and caisson stability. The results showed that the wave forces acting on local walls were smaller in the perforated wall caisson than in the solid wall caisson. For the caisson stability, the critical weights of the perforated wall caisson also turned out to be smaller than those of the solid wall caisson. The Phenomenon was attributed to the dual effects inherent to the perforated wall caisson, which are the decrease of total horizontal force and the phase difference between the total horizontal and vertical forces.

  • PDF

Wave Reflection from Partially Perforated Wall Caisson Breakwater

  • K. D. Suh;Park, W. S.;Lee, D. S.
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.176-183
    • /
    • 1996
  • In order to reduce wave reflection from a breakwater, a perforated wall caisson is often used. A conventional perforated wall caisson breakwater for which the water depth inside the wave chamber is the same as that on the rubble mound berm has less weight than a vertical solid caisson with the same width and moreover the weight is concentrated on the rear side of the caisson. (omitted)

  • PDF

The Reflection Characteristics of a Perforated Slit Caisson with Two Chambers (이중 유공슬릿 케이슨에 의한 반사특성)

  • Hur, Dong-Soo;Lee, Woo-Dong;Lee, Hyeon-Woo;Kim, In-Chul
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.60-67
    • /
    • 2010
  • Recently, there has been an increase in the construction of various types of coastal structures for efficient wave dissipation, seawater exchange, and so on. Among these, a perforated slit caisson has been widely used to reduce the reflected wave energy and the wave pressure on the structure. Therefore, many studies on the wave force on a caisson, as well as the wave reflection from it, have been carried out with laboratory experiments and numerical analyses, considering it as a 2-D problem. However, because a structure like a perforated slit caisson has a variable 3-D shape, waves forces should be considered as a 3-D problem. Therefore, in this paper, a fully-nonlinear 3-D numerical model (LES-WASS-3D) is proposed to examine the reflection characteristics of a perforated slit caisson with two chambers. The numerical model, LES-WASS-3D, was verified in a 3-D wave field by a comparison with existing experimental data for wave reflection coefficients. Then, using the numerical results, the reflection from a perforated slit caisson with two chambers was examined in relation to wave steepness, chamber width, and the shape/porosity of perforated slit.

Hydraulic Experiments on Reflection Coefficients for Perforated Wall Caisson with Rock Fill (유수실을 사석으로 채운 유공 케이슨에 대한 반사계수 실험)

  • Kim, Young-Taek;Lee, Jong-In
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.403-408
    • /
    • 2019
  • In general, the caisson having the perforated wall is used to for the purpose of reducing the wave reflection and wave overtopping. In this study, the hydraulic characteristics (reflection coefficient) of the perforated wall caisson chamber filled with aggregates (rocks) were investigated with hydraulic model tests. When the perforated wall chambers were filled with aggregates, the reflection coefficients would increase. However, it was confirmed that the rock filling method into the perforated wall chamber could secure the stability of the structures and satisfy the hydraulic characteristics at a certain level.

Influence of Wave Chamber Slab on Wave Pressure on First and Second Wall of Perforated Caisson Breakwater (유수실 상부 덮개가 유공 케이슨 방파제의 전면벽 및 후면벽 파압에 미치는 영향)

  • Oh, Sang-Ho;Ji, Chang-Hwan;Oh, Young-Min;Jang, Se-Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2317-2328
    • /
    • 2013
  • In this study, the effect of wave chamber slab on wave pressure along the first and second wall of the perforated caisson breakwater was investigated by performing physical experiment. The experiment was performed without and with the wave chamber slab of the perforated caisson by varying the front wall porosity. The discrepancy in magnitudes of the measured wave pressure along the both walls of the perforated caisson was apparent according to the existence of the wave chamber slab as significantly greater pressures were acquired for all the test cases when the wave chamber was closed upward by the slab. As a result, the magnitudes of the total wave force calculated by integration of the measured wave pressure also were much larger for the caisson breakwater having the wave chamber slab, exceeding the value based on the well known Takahashi's formula (Takahashi and Shimosako, 1994). With respect to the porosity of the front wall, meanwhile, higher pressures were obtained with a larger porosity, at both the first and second wall of the breakwater.

Application of a Regular Wave Model to Calculation of Irregular Wave Reflection from Perforated-Wall Caisson Breakwaters (불규칙파의 유공 케이슨 방파제로부터의 반사율 산정시 규칙파 모델 적용)

  • Suh Kyung Duck;Son Sang Young
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.205-208
    • /
    • 2002
  • Numerous studies have been performed to develop an analytical model that can predict the reflection of regular or irregular waves from a perforated-wall caisson breakwater. Though such irregular wave models as Suh et at. (2001) become available, regular wave models are still in extensive use because of their simplicity. In the present study, using the regular wave model of Fuggazza and Natale(1992), the reflection of irregular waves from a perforated-wall caisson breakwater was calculated in several different methods. First, the regular wave model was re-validated by the hydraulic model tests. Though the model somewhat over-predicted the reflection coefficients at larger values and under-predicted them at smaller values, overall agreement was pretty good between calculation and measurement. Then, the regular wave model was applied to calculate the irregular wave reflection in the experiments of Suh et at.(2001) and Bennett et al. (1992). In applying the regular wave model to irregular wave reflection, several different methods were used. The results showed that it is the most reasonable to use the regular wave model repeatedly for each frequency component of the irregular wave specuum with the root-mean-squared wave height for all the frequencies .

  • PDF

Three-dimensional Simulation of Wave Reflection and Pressure Acting on Circular Perforated Caisson Breakwater by OLAFOAM (OLAFOAM에 기초한 원형유공케이슨 방파제의 반사율 및 작용파압에 관한 3차원시뮬레이션)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;Kim, Sang-Gi;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.286-304
    • /
    • 2017
  • In this study, we proposed a new-type of circular perforated caisson breakwater consisting of a bundle of latticed blocks that can be applied to a small port such as a fishing port, and numerically investigated the hydraulic characteristics of the breakwater. The numerical method used in this study is OLAFOAM which newly added wave generation module, porous media analysis module and reflected wave control module based on OpenFOAM that is open source CFD software published under the GPL license. To investigate the applicability of OLAFOAM, the variations of wave pressure acting on the three-dimensional slit caisson were compared to the previous experimental results under the regular wave conditions, and then the performance for irregular waves was examined from the reproducibility of the target irregular waves and frequency spectrum analysis. As a result, a series of numerical simulations for the new-type of circular perforated caisson breakwaters, which is similar to slit caisson breakwater, was carried out under the irregular wave actions. The hydraulic characteristics of the breakwater such as wave overtopping, reflection, and wave pressure distribution were carefully investigated respect to the significant wave height and period, the wave chamber width, and the interconnectivity between them. The numerical results revealed that the wave pressure acting on the new-type of circular perforated caisson breakwaters was considerably smaller than the result of the impermeable vertical wall computed by the Goda equation. Also, the reflection of the new-type caisson breakwater was similar to the variation range of the reflection coefficient of the existing slit caisson breakwater.

An Experimental Investigation for Hydraulic Characteristics of Solid and Perforated-wall Caissons of a Mixed Type Breakwater (혼성방파제의 무공 및 유공 케이슨의 수리특성에 관한 실험)

  • 서경덕;오영민;전인식;이달수
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.4
    • /
    • pp.243-249
    • /
    • 1992
  • Hydraulic experiments were carried out to investigate the hydraulic characteristics of solid and perforated-wall caissons of a mixed type breakwater for regular waves of various heights and periods. It was found that a perforated-wall caisson is more advantageous than a solid caisson for such hydraulic characteristics as reflection. transmission, and runup at the front face of the caissons and that the experimental results agree reasonably well with existing theoretical or empirical relationships. Especially the reflection coefficient of a perforated-wall caisson. mainly governed by the resonance in the wave chamber, was found to be minimum when the width of the wave chamber is approximately a quarter of the wave length in the wave chamber.

  • PDF

Wave Reflection from Partialy Perforated Caisson Breakwater (부분 유공 케이슨 방파제로부터의 파의 반사)

  • Suh, Kyung-Doug
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.3
    • /
    • pp.221-230
    • /
    • 1996
  • The Suh and Park's analytical model. originally developed to calculate wave reflection from a conventional fully perforated caisson breakwater, is applied to a partially perforated caisson breakwater by approximating the vertical wall of the lower part of the front face of the caisson as a very steep sloping wall. Also, in the model, the inertial resistance term at the perforated wall is modified by using the blockage coefficient proposed by Kakuno and Liu. The model is compared against the hydraulic experimental data reported by Park et al. in 1993. Both the experimental data and the analytical model results show that the influence of inertial resistance is important so that wave reflection becomes minimum when B/L. is approximately 0.2 (in which R : wave chamber width, and 1, : wave length inside the wave chamber), which is somewhat smaller than the theoretical value B/L, : 0.25 obtained by assuming that the influence of inertial resistance is negligible. It is also shown that the analytical model based on a linear wave theory tends to overpredict the reflection coefficient as the wave nonlinearity increases, thus the model is preferably to be used for ordinary waves of small steepness.

  • PDF