DOI QR코드

DOI QR Code

Hydraulic Experiments on Reflection Coefficients for Perforated Wall Caisson with Rock Fill

유수실을 사석으로 채운 유공 케이슨에 대한 반사계수 실험

  • Kim, Young-Taek (Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Lee, Jong-In (Department of Marine and Civil Engineering, Chonnam National University)
  • 김영택 (한국건설기술연구원 국토보전연구본부) ;
  • 이종인 (전남대학교 공학대학 해양토목공학과)
  • Received : 2019.11.13
  • Accepted : 2019.12.20
  • Published : 2019.12.31

Abstract

In general, the caisson having the perforated wall is used to for the purpose of reducing the wave reflection and wave overtopping. In this study, the hydraulic characteristics (reflection coefficient) of the perforated wall caisson chamber filled with aggregates (rocks) were investigated with hydraulic model tests. When the perforated wall chambers were filled with aggregates, the reflection coefficients would increase. However, it was confirmed that the rock filling method into the perforated wall chamber could secure the stability of the structures and satisfy the hydraulic characteristics at a certain level.

일반적으로 유공벽을 갖는 케이슨(유공케이슨)은 직립식 구조물 벽면에 유공부를 설치하여 반사파의 저감, 월파량의 저감 등의 목적으로 사용된다. 본 연구에서는 유공케이슨 유수실을 골재(사석)로 채운 형태의 구조물에 대한 수리특성(반사계수)을 수리모형실험을 통해 검토하였다. 유수실을 사석으로 채운 경우가 유수실이 비어있는 일반적인 형상보다는 반사계수가 크게 나타났으나, 속채움재를 유수실에 설치하여 중량을 확보함으로서 구조물의 안정성을 확보하고, 일정 수준에서 수리특성을 만족할 수 있는 것으로 검토되었다.

Keywords

References

  1. Crina-Stefania Ciocan, Francisco Taveira-Pinto, Luciana das Neves and Paulo Rosa-Santos (2017). Experimental study of the hydraulic efficiency of a novel perforated-wall caisson concept, the LOWREB. Coastal Engineering, 126, 69-80. https://doi.org/10.1016/j.coastaleng.2017.06.001
  2. Fugazza, M. and Natale, L. (1992). Hydraulic design of perforated breakwaters. Journal of Waterway, Port, Coast and Ocean Engineering, 118, 1-14. https://doi.org/10.1061/(ASCE)0733-950X(1992)118:1(1)
  3. Huang, Z., Li, Y. and Liu, Y. (2011). Hydraulic performance and wave loadings of perforated/slotted coastal structures: a review. Ocean Engineeing, 38, 1031-1053. https://doi.org/10.1016/j.oceaneng.2011.03.002
  4. Suh, K.D., Kim, Y.W. and Ji, C.H. (2011). An empirical formula for friction coeficient of a perforated wal with vertical slits. Coastal Engineering, 58, 85-93. https://doi.org/10.1016/j.coastaleng.2010.08.006
  5. Jarlan, G.E. (1961). A perforated vertical breakwater. The Dock and Harbor Authority, London, UK, 41(486).
  6. Kim, Y.T. and Lee, J.I. (2013). Estimation of optimal slit length of perforated wall below Still Water Level: Single Chamber Condition. Journal of Water Resources Association, 46(4), 327-334 (in Korean). https://doi.org/10.3741/JKWRA.2013.46.4.327
  7. Korea Institute of Construction Technology (KICT) (2000). Wave reflection of perforated-wall caisson breakwaters (in Korean).
  8. Lee, J.-I. and Shin, S. (2014). Experimental study on the wave reflection of partially perforated wall caissons with single and double chambers. Ocean Engineering, 91, 1-10. https://doi.org/10.1016/j.oceaneng.2014.08.008
  9. Taveira-Pinto, F., Rosa-Santos, P., Veloso-Gomes, F. and Lopes, H. (2011). Efficiency analysis to reflection of a new quay wall type. Journal of Hydraulic Research, 49, 539-546. https://doi.org/10.1080/00221686.2011.574378
  10. Theocharis, I., Anastasaki, E.N., Moutzouris, C.I. and Giantsi, T. (2011). A new wave absorbing quay-wall for wave height reduction in a harbor basin. Ocean Engineering, 38, 1967-1978. https://doi.org/10.1016/j.oceaneng.2011.09.020