• Title/Summary/Keyword: Perfluorinated compounds (PFCs)

Search Result 30, Processing Time 0.028 seconds

Study on Treatment Characteristics of Perfluorinated Compounds Using a High Temperature Plasma (고온 플라즈마를 이용한 과불화화합물의 처리 특성 연구)

  • Moon, Gi-Hak;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.108-113
    • /
    • 2019
  • In this study, the decomposition characteristics of perfluorinated compounds generated in semiconductor manufacturing process were investigated by using a high temperature plasma. The analysis results revealed that $CF_4$ and $SF_6$ showed the highest efficiency at 12.8 kW power, but no significant difference was observed at the power above. Experimental results showed that the maximum efficiency was obtained at the flow rate of about 14 mL/min and the treatment efficiency decreased as the flow rate increased or decreased with respect to the flow rate of 14 mL/min. As a result, the decomposition characteristics of perflurocompounds (PFCs) using a high temperature plasma could be grasped, and also the basis for the treatment of PFCs and greenhouse gases generated in the semiconductor manufacturing process could be obtained.

Monitoring and Development of Pretreatment Method for Perfluorinated Compounds in Fish Samples (어류에서의 과불화합물 분석을 위한 전처리법 확립 및 모니터링)

  • Heo, Jin-Ju;Lee, Ji-Woo;Kim, Seung-Kyu;Oh, Jeong-Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.7
    • /
    • pp.485-494
    • /
    • 2013
  • An efficient extraction method was developed for the analysis of 16 perfluorinated compounds (PFCs) in fish samples. We compared the recoveries from the Ion-Pairing Extraction (IPE), Liquid-Liquid Extraction (LLE), Solid-Phase Extraction (SPE), IPE + SPE method with varying the injection time of the internal standard. As a result, IPE method with the internal standard before extraction was evaluated as the most effective pretreatment method. The RPM (Revolution Per Munite) and pH in IPE-before method were additionally adjusted and the more efficient pretreatment method was established. The total 33 fish samples including liver and gut samples were collected from Korean markets and analyzed PFCs with developed pretreatment method of this study. Total 16 PFC levels in fish samples ranged from ND to 1.67 ng/g with 100% detection frequency. The average PFCs concentrations of muscle, liver and gut samples from fish were compared and showed the following trend: liver (17.8 ng/g) > gut (13.3 ng/g) > muscle (1.67 ng/g). The PFC levels in fish samples were similar or lower than other available previous results of foreign studies.

Development of a pretreatment method for determination of levels of perfluorinated compounds in foods according to fat and protein contents (지방과 단백질 함량에 따른 식품의 과불화화합물 분석을 위한 전처리 방법 확립)

  • Bang, Sunah;Park, Na-youn;Hwang, Youngrim;Kang, Gil Jin;Kim, Hye-Jeong;Kang, Young-Woon;Kho, Younglim;Kim, Jung Hoan
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.1
    • /
    • pp.14-20
    • /
    • 2018
  • Perfluorinated compounds (PFCs) have recently been recognized as global environmental pollutants. This study was performed to develop an analytical method for determination of levels of PFCs in food by LC-MS/MS. One hundred and nine food products were divided into two groups based on their fat and protein contents (high and low), following which samples containing high fat and protein contents were pooled and subjected to pretreatment consisting of enzymatic degradation and hexane extraction. The limit of detection of 17 PFCs in the samples were in the range of 0.013-0.145 ng/g. The degrees of precision of detection for group 1 (samples with low fat and protein contents) and group 2 (samples with high fat and protein contents) were 0.8-21.1 and 1.7-28.2%, respectively, with an accuracy of 78.8-109.8% for group 1 and 80-114.5% for group 2. This study indicated that pretreatment of high fat and protein foods with enzymatic degradation and hexane extraction would improve the detection of PFCs in food.

Study on Concentrations and Mass Flows of Perfluorinated Compounds (PFCs) in a Wastewater Treatment Plant (폐수처리장의 과불화화합물 검출수준 및 처리공정 중 물질흐름 해석에 관한 연구)

  • Park, Jong-Eun;Kim, Seong-Kyu;Oh, Jung-Keun;Ahn, Sung-Yun;Lee, Mi-Na;Cho, Chon-Rae;Kim, Kyoung-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.5
    • /
    • pp.326-334
    • /
    • 2012
  • To determine the concentrations and the mass flow of selected 10 perfluorinated compounds (PFCs), a field study was conducted in a wastewater treatment plant. Raw influent, primary influent, primary effluent, aeration tank effluent, secondary effluent, final effluent, dehydration liquor, primary sludge, thickened sludge, final sludge were collected over 3 days in the summer and the winter respectively. Collected samples were equally mixed and then served as an analytical sample. Total 10 compounds were analyzed. In terms of treated water, the concentration of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) were in range of N.D.~26.29 ng/L and N.D.~38.15 ng/L respectively. Perfluorononanoate (PFNA) and perfluorohexanesulfonate (PFHxS) were ranged from N.D. to 36.79 ng/L and from N.D. to 24.36 ng/L. In terms of sludges, a concentration of PFOS, PFOA, and perfluorodecanesulfonate (PFDS) were detected from 6.82 to 59.37 ng/g, from 0.13 to 0.37 ng/g, from N.D. to 0.83 ng/g respectively. Mass loading for PFCs increased during wastewater treatment except for PFNA. The observed increase in mass flow of PFCs may have resulted from biodegradation of precursor compounds.

Characteristics of Removal of Perfluorinated Compounds (PFCs) Using Magnetic Ion Exchange Resin (MIEX®) in Water (자성체 이온교환수지(MIEX®)를 이용한 수중의 과불화화합물(PFCs) 제거 특성)

  • Son, Hee-Jong;Yoom, Hoon-Sik;Kim, Kyung-A;Ryu, Sang-Weoun;Kwon, Ki-Won
    • Journal of Environmental Science International
    • /
    • v.22 no.8
    • /
    • pp.1009-1017
    • /
    • 2013
  • Perfluorooctanoic acid (PFOA) and perfluorooctyl sulfonate (PFOS) is a new persistent organic pollutants of substantial environmental concern. This study investigated the potential of magnetic ion exchange resin (MIEX$^{(R)}$) as the adsorbent for the removal of PFOA and PFOS from Nakdong River water. In our batch experiments, we studied the effect of some parameters (pH, temperature, sulfate concentration) on the removal of PFOA and PFOS. The results of sorption kinetics on MIEX$^{(R)}$ show that it takes 90 min to reach equilibrium but the economical contact time and dosage were 30 min and 10 mL/L. An increase in pH (pH 6~10) leads to a decrease in PFOA (2.0%) and PFOS (3.6%) sorption on MIEX$^{(R)}$. The sorption of both PFOA and PFOS decreases with an increase in ionic strength for sulfate ion (${SO_4}^{2-}$), due to the competition phenomenon. An increase in water temperature ($8^{\circ}C{\sim}28^{\circ}C$) in water leads to a increase in PFOA (2.8%) and PFOS (4.3%) sorption on MIEX$^{(R)}$. Based on the sorption behaviors and characteristics of the adsorbents and adsorbates, ion exchange and hydrophobic interaction were deduced to be involved in the sorption, and hemi-micelles possibly formed in the intraparticle pores.

Improvement of Migration Fastness of Perfluorocarbons-free Synthetic Suede by Chitosan Pretreatment (키토산 전처리를 통한 과불화탄소 무함유 합성 스웨이드의 이염성 견뢰도 향상)

  • Lee, Hye Mi;Kim, Ah Rong;Kim, Dae Geun
    • Textile Coloration and Finishing
    • /
    • v.31 no.4
    • /
    • pp.258-267
    • /
    • 2019
  • Synthetic suede without PFCs(perfluorinated compounds) are followed by subsequent high temperature treatment. But migration fastness of synthetic suede may be reduced due to sublimation of disperse dyes that results from the high temperature treatment. Therefore, in this study, chitosan treatment was used to improve the migration fastness before polyurethane dipping process. Polyester fiber was treated with sodium hydroxide aqueous solution before chitosan processing. This samples treated with a chitosan concentration upto 0.5% were dyed and coated with PUD(polyurethane dispersion). The migration fastness was most improved at 0.35% application. This is presumably due to the fact that the chitosan may increase the dye-binding capability through intermolecular hydrogen bonding.

Toxicological Effects of PFOS and PFOA on Earthworm, Eisenia fetida

  • Joung, Ki-Eun;Jo, Eun-Hye;Kim, Hyun-Mi;Choi, Kyung-Hee;Yoon, Jun-Heon
    • Environmental Analysis Health and Toxicology
    • /
    • v.25 no.3
    • /
    • pp.181-186
    • /
    • 2010
  • Perfluorinated Compounds (PFCs) are anthropogenic compounds found in trace amounts in many environmental compartments far from areas of production. Along with the highly persistent nature of PFCs, there are increasing concerns over the potential adverse effects of them on the ecosystems. Most of highly fluorinated compounds degrade into PFOS and PFOA that are very stable compounds hard to break down. So, in this study, we tried to determine the toxicity of PFOS and PFOA in the terrestrial invertebrate. Acute toxicity test using earthworm, Eisenia fetida, was performed according to the OECD test guideline 207 (Earthworm, Acute Toxicity Tests). In the 14 day acute toxicity tests, the highest concentration causing no mortality and the lowest concentration causing 100% mortality of PFOS were 160 and 655 mg/kg (dry weight), respectively. And the highest concentration causing no mortality and the lowest concentration causing 100% mortality were 500 and 1,690 mg/kg (dry weight), respectively in the PFOA-exposure group. 14 day-LC50 values were estimated at the level of 365 and 1,000 mg/kg (dry weight) in the PFOS and PFOA-exposed group. These results indicate that under laboratory conditions PFOS is about 3 times more toxic to earthworms than PFOA. Based on known environmental concentrations of PFOS in the soil of Korea, which occur in the 0.42~0.73 ng/L range, there is no apparent risk to terrestrial invertebrate, earthworms. However, further work is required to investigate long-term effects on these and other terrestrial organisms.

Distribution characteristics of perfluorinated compounds in major river water and sediment (우리나라 주요 하천수 및 퇴적토에 축적된 과불화화합물의 분포특성)

  • Yeo, Min-Kyung;Hwang, Eun Hye;Jeong, Gi Ho
    • Analytical Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.313-323
    • /
    • 2012
  • We have developed analysis method of PFCs in river water and sediment, and determined seven species of PFCs such as PFBS, PFHxS, PFOS, PFHpA, PFOA, PFNA and PFDA. Water and sediment samples were collected from 21 and 13 different sites along the Nakdong, Seomjin and Nam River, respectively. The water samples were pretreated with HLB cartridge and sediment samples were concentrated after extracted by sonication, and the levels of PFCs were determined by LC-MS/MS. The coefficient of determination ($R^2$) values of calibration curves were higher than 0.99. The method detection limits ranged 0.09~0.63 ng/L in water and 0.013~0.020 ng/g in sediment. The recovery rates of PFCs was found to be 74~98% for water and 87~111% for sediment. PFOA was the major species in water samples and followed by PFHpA and PFOS. In sediment, PFOA, PFOS and PFDA showed similar levels. Both water and sediment samples collected from the Nakdong River showed the highest concentrations of PFCs among the three rivers.

Toxic Interactions of Perfluorinated Compounds (PFCs) with Heavy Metals Using Vibrio fischeri (발광박테리아 Vibrio fischeri를 이용한 과불화합물과 중금속의 복합독성평가)

  • Lee, Woo-Mi;Kim, Ji-Sung;Kim, Il-Ho;Kim, Seog-Ku;Yoon, Young-Han
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.2
    • /
    • pp.119-126
    • /
    • 2014
  • The object of this study was to evaluate the combined toxic interactions of the perfluorooctanoic acid (PFOA) or perfluorooctane sulfonate (PFOS) with six heavy metals (Cu, Zn, Cr, Cd, Hg, and Pb). The individual and combined toxic effects were assessed using the Vibrio fischeri assay. In case of the individual toxicity, PFOA was higher toxic than PFOS and toxicity of PFOA and PFOS were lower than heavy metal. In the toxicity of heavy metals, the $Hg^{2+}$ was found to be most toxic followed by $Pb^{2+}$, $Cr^{6+}$, $Cu^{2+}$, $Zn^{2+}$, and $Cd^{2+}$. The combined toxicity of PFOA or PFOS with $Cr^{6+}$ were synergistic effect because the $EC_{50}$ mix values were less than 1 TU. PFOA + $Zn^{2+}$, PFOS + $Zn^{2+}$, PFOA + $Cd^{2+}$ and PFOS + $Cd^{2+}$ produced addictive effect. Except in these case, all of binary mixtures show antagonistic effect. This study proved potential risk of coexistent with perfluorinated compounds and heavy metals in water environment.

Bioconcentration factor of perfluorochemicals for each aerial part of rice (수도작 작물의 과불소화합물 흡수이행성)

  • Choi, Geun-Hyoung;Lee, Deuk-Yeong;Bae, Ji-Yeon;Rho, Jin-Ho;Moon, Byung-Cheol;Kim, Jin-Hyo
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.2
    • /
    • pp.191-194
    • /
    • 2018
  • Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are emerging pollutants in agricultural product, and the residual patterns and the uptake potentials were only studied on several crops, not on rice. The residue level and bioconcentration factor (BCF) of PFOA and PFOS were investigated on the low ($1mg\;kg^{-1}$) and the high contaminated soil ($5mg\;kg^{-1}$) groups. The residue levels in brown rice in the low group and in the high group were 0.002-0.004 and $0.008-0.030mg\;kg^{-1}$ of the each perfluorinated compounds (PFCs), and in the rice husk were $0.035-0.074mg\;kg^{-1}$ and $0.125-0.376mg\;kg^{-1}$ of the each PFCs, respectively. Furthermore, the residues in rice straw were the highest level in the all rice parts both in the groups. The PFOA and PFOS were reached to $3.723mg\;kg^{-1}$ and $7.641mg\;kg^{-1}$, respectively, and the BCF (1.474 and 4.700) as well.