• Title/Summary/Keyword: Perfectly Plastic Material

Search Result 57, Processing Time 0.019 seconds

Residual stress in an elastoplastic annular disc interacting with an elastic inclusion

  • Zarandi, Somayeh Bagherinejad;Lai, Hsiang-Wei;Wang, Yun-Che;Aizikovich, Sergey M.
    • Coupled systems mechanics
    • /
    • v.8 no.3
    • /
    • pp.273-287
    • /
    • 2019
  • Elastoplastic analysis of an annular disc, being fully constrained on its outer rim and interacting with a purely elastic inclusion perfectly bonded with its inner rim, is conducted to study its plastic deformation and residual stress under thermal cycles. The system is termed the composite disc. Quasi-static plane-strain deformation is assumed, and the von Mises yield criterion with or without the Ludwik hardening rule is adopted in our finite element calculations. Effects of multiple material properties simultaneously being temperature dependent on the plastic behavior of the composite disc are considered. Residual stress is analyzed from a complete loading and unloading cycle. Results are discussed for various inclusion radii. It is found that when temperature dependent material properties are considered, the maximum residual stress may be greater than the maximum stress inside the disc at the temperature-loaded state due to lower temperature having larger yield stress. Temperature independent material properties overestimate stresses inside materials, as well as the elastic irreversible temperature and plastic collapse temperature.

Bounds on plastic strains for elastic plastic structures in plastic shakedown conditions

  • Giambanco, Francesco;Palizzolo, Luigi;Caffarelli, Alessandra
    • Structural Engineering and Mechanics
    • /
    • v.25 no.1
    • /
    • pp.107-126
    • /
    • 2007
  • The problem related to the computation of bounds on plastic deformations for structures in plastic shakedown condition (alternating plasticity) is studied. In particular, reference is made to structures discretized by finite elements constituted by elastic perfectly plastic material and subjected to a special combination of fixed and cyclic loads. The load history is known during the steady-state phase, but it is unknown during the previous transient phase; so, as a consequence, it is not possible to know the complete elastic plastic structural response. The interest is therefore focused on the computation of bounds on suitable measures of the plastic strain which characterizes just the first transient phase of the structural response, whatever the real load history is applied. A suitable structural model is introduced, useful to describe the elastic plastic behaviour of the structure in the relevant shakedown conditions. A special bounding theorem based on a perturbation method is proposed and proved. Such theorem allows us to compute bounds on any chosen measure of the relevant plastic deformation occurring at the end of the transient phase for the structure in plastic shakedown; it represents a generalization of analogous bounding theorems related to the elastic shakedown. Some numerical applications devoted to a plane steel structure are effected and discussed.

Evaluation of Limit Loads for Surface Cracks in the Steam Generator Tube (증기발생기 전열관에 존재하는 표면균열의 한계하중 평가)

  • Kim Hyun-Su;Kim Jong-Sung;Jin Tae-Eun;Kim Hong-Deok;Chung Han-Sup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.993-1000
    • /
    • 2006
  • Operating experience of steam generators has shown that cracks of various morphology frequently occur in the steam generator tubes. These cracked tubes can stay in service if it is proved that the tubes have sufficient safety margin to preclude the risk of burst and leak. Therefore, integrity assessment using exact limit load solutions is very important for safe operation of the steam generators. This paper provides global and local limit load solutions for surface cracks in the steam generator tubes. Such solutions are developed based on three-dimensional (3-D) finite element analyses assuming elastic-perfectly plastic material behavior. For the crack location, both axial and circumferential surface cracks, and for each case, both external and internal cracks are considered. The resulting global and local limit load solutions are given in polynomial forms, and thus can be simply used in practical integrity assessment of the steam generator tubes.

Analysis on the Mechanism of Fluting in the Bending of Low Carbon Steel Sheets (저탄소강판을 이용한 굽힘 가공에서 발생하는 꺽임현상에 대한 발생 기구 해석)

  • Park, K.C.;Yoon, J.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.336-339
    • /
    • 2007
  • In order to investigate the cause of fluting in tangential bending of low carbon steel sheet, an analytic analysis, an experiment and a series of finite element analysis for bending process were done. The fluting in bended sheet was due to the yield point elongation of material. Due to the yield point elongation, unstable plastic hinge was occurred in course of bending of elastic perfectly plastic sheet. According to the analysis and computational results, lower yield point elongation than 5% was required to prevent fluting in $0.5{\sim}0.6t$ sheet in $15{\sim}20mm$ radius bending.

  • PDF

Study on the plastic deformation of a cylinder subjected to localized impulsive pressure (국부충격하중을 받는 원관의 삭성변형에 관한 고찰)

  • ;;Zoo, Young Woo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.5 no.2
    • /
    • pp.131-138
    • /
    • 1981
  • The effect of axial stress on the plastic deformation of rigid-perfectly plastic cylindrical tube under the impulsive band pressure is investigated. It is assumed that the tube is constructed with the material of Tresca's yield criterion. A closed from sloution is obtained for a rectangular pulse shape of uniform band pressure by using the circumscribed yield surface. The analysis shows that the effect ot exial stress is negligible when the dimensionless axial stress(n$\sub$x/= N$\sub$x/.delta.$\sub$y/H) is less than 0.2 or the dimensionless whdth of band pressure(.xi.=C/.root.RH) is greater than 2, but the effect of axial stress is of considerable importance when the axial stress is greater than 0.3 and the width of band pressure is less than 1.

A Study of Formative World with Plastic Furniture Design (Focused on the anti-design in 1960s ${\sim}$1970s) (플라스틱 가구디자인의 조형세계에 관한 연구 (1960년대부터 1970년대 반디자인을 중심으로))

  • Oh, Se-Ja
    • Journal of the Korea Furniture Society
    • /
    • v.19 no.1
    • /
    • pp.11-21
    • /
    • 2008
  • For ages, Furniture, it has been improved for human aesthetic needs as well as human life as a tool. In the 1960s, it's the age of an ideological conflict. And its war made the hippie-culture come out. And, it was economically bountiful. The epoch-making development of the scientific technology made the result of space development, conquering the moon in the first of the mankind. Made the appearance of the Anti-design against the modern design which was the also, it traditional values and the mainstream. The plastic has merits, low-priced, light, being perfectly able to do mass production of the all kind of shapes' furniture with all-desired colors. It was the wonderful material for the expression of the short-life character, the irony, the kitsch, and an intentional decoration to being chased by anti-design. And the result, the plastic furniture in the people's daily-life has well represented with reflecting the mind of the people in that age.

  • PDF

Plastic η Eactors for J-Integral Testing of Double-Edge Cracked Tension(DE(T)) Plates (양측균열인장(DE(T)) 평판의 J-적분 시험을 위한 소성 η계수)

  • Son, Beom-Goo;Shim, Do-Jun;Kim, Yun-Jae;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.259-266
    • /
    • 2004
  • Detailed two-dimensional and three-dimensional finite element (FE) analyses of double-edge cracked tension (DE(T)) specimens are carried out to investigate the effect of the relative crack length and the thickness on experimental J testing schemes. Finite element analyses involve systematic variations of relevant parameters, such as the relative crack depth and plate width-to-thickness ratio. Furthermore, the strain hardening index of material is systematically varied, including perfectly plastic (non-hardening) cases. Based on FE results, a robust experimental J estimation scheme is proposed.

Analysis on the Mechanism of Fluting in the Bending of Low Carbon Steels (저탄소강판을 이용한 굽힘 가공에서 발생하는 꺾임 현상에 대한 발생기구 해석)

  • Park, K.C.;Yoon, J.B.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.317-322
    • /
    • 2007
  • In order to investigate the cause and condition of fluting in tangential bending of low carbon steel sheet, an analytic analysis, an experiment and a series of finite element analysis for bending process were done. The fluting in bended sheet was related with the yield point elongation of material. Due to the yield point elongation, unstable plastic hinge was occurred in course of bending of elastic perfectly plastic sheet. According to the analysis and computational results, lower yield point elongation than 5% was required to prevent fluting in 0.5-0.6t sheet in $15{\sim}25mm$ radius bending. The tendency of fluting occurrence was reduced as decreasing the radius of bending, increasing thickness of bended sheet, and removing irregularity in sheet and bending processes.

Transient response of a right-angled bent cantilever subjected to an out-of-plane tip load

  • Wang, B.;Lu, G.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.3
    • /
    • pp.331-344
    • /
    • 1999
  • This paper provides an analysis of the transient behaviour of a right-angled bent cantilever beam subjected to a suddenly applied force at its tip perpendicular to its plane. Based on a rigid, perfectly plastic material model, a double-hinge mechanism is required to complete the possible deformation under a rectangular force pulse (constant force applied for a finite duration) with a four-phase response mode. The kinematics of the various response phases are described and the partitioning of the input energy at the plastic hinges during the motion is evaluated.

Numerical Analysis of Reinforce Concrete Structures Using Axial Deformation Link Elements (축방향 변형 요소를 이용한 RC 부재의 해석적 연구)

  • 신승교;허우영;임윤묵;김문겸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.475-478
    • /
    • 1999
  • A numerical tool for predicting the behavior of reinforced concrete structures under uniaxial loads is proposed. Concrete is considered as quasi-brittle material, and for a reinforcing bar, an elastic-perfectly plastic constitutive relationship is adopted. In this study, the behavior of reinforced concrete according to the interface properties between the concrete and steel is analyzed. Comparisons between the numerical predictions and the experimental results show good agreements in the load-deflection behaviors and ultimate loads of reinforced concrete structures.

  • PDF