• Title/Summary/Keyword: Percolation model

Search Result 75, Processing Time 0.024 seconds

Estimating Irrigation Requirement for Rice Cropping under Flooding Condition using BUDGET Model

  • Seo, Mi-jin;Han, Kyung-Hwa;Zhang, Yong-Seon;Jung, Kang-Ho;Cho, Hee-Rae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.4
    • /
    • pp.246-254
    • /
    • 2015
  • This study explored the effect of rainfall pattern and soil characteristics on water management in rice paddy fields, using a soil water balance model, BUDGET. In two sites with different soil textural group, coarse loamy soil (Gangseo series) and fine soil (Hwadong series), respectively, we have monitored daily decrease of water depth, percolation rate, and groundwater table. The observed evapotranspiration (ET) was obtained from differences between water depth decrease and percolation rate. The root mean square difference values between observed and BUDGET-estimated ET ranged between 10% and 20% of the average observed ET. This is comparable to the measurement uncertainty, suggesting that the BUDGET model can provide reliable ET estimation for rice fields. In BUDGET model of this study, irrigation requirement was determined as minimum water need for maintaining water-saturated soil surface, assuming 100 mm of bund height and no lateral loss of water. The model results showed different water balance and irrigation requirement with the different soil profile and indicated that minimum percolation rate by plow pan could determine the irrigation requirement of rice paddy field. For the condition of different rainfall distribution, the results presented different irrigation period and amounts, representing the importance of securing water for irrigation against different rainfall pattern.

Using Practice Context Models to Knowledge Management in Proof-of-Concept Activities: A Contribution of Knowledge Networks and Percolation Theory

  • Neto, Antonio Jose Rodrigues;Borges, Maria Manuel;Roque, Licinio
    • Journal of Information Science Theory and Practice
    • /
    • v.9 no.1
    • /
    • pp.1-23
    • /
    • 2021
  • This study introduces novel research using Practice Context Models supported by Knowledge Networks and Percolation Theory with the aim to contribute to knowledge management in Proof-of-Concept (PoC) activities. The authors envision this proposal as a potential instrument to identify network structures based on a percolation (propagation) threshold and to analyze the importance of nodes (e.g., practitioners, practices, competencies, movements, and scenarios) during the percolation of knowledge in PoC activities. After thirty months immersed in the natural PoC habitat, acting as observers and practitioners, and supported by an ethnographic exercise and a designer-research mindset, the authors identified the production of meaning in PoC activities occurring in a hermeneutic circle characterized by the presence of several knowledge networks; thus, discovering the 'natural knowledge' in PoC as a spectrum of cognitive development spread throughout its network, as each node could produce and disseminate certain knowledge that flows and influences other nodes. Therefore, this research presents the use of Practice Context Models 'connected' to Knowledge Networks and Percolation Theory as a potential and feasible proposal to be built using the attribution of values (weights) to the nodes (e.g., practitioners, practices, competencies, movements, scenarios, and also knowledge) in the context of PoC with the aim to allow the players (e.g., PoC practitioners) to have more flexibility in building alliances with other players (new nodes); that is, focusing on those nodes with higher value (focus on quality) in collaboration networks, i.e., alliances (connections) with the aim to contribute to knowledge management in the context of PoC.

Extension of Group Interaction Modelling to predict chemorheology of curing thermosets

  • Altmann, Nara;Halley, Peter J.;Nicholson, Timothy M.
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.2
    • /
    • pp.91-102
    • /
    • 2009
  • This paper describes an extension of viscoelastic Group Interaction Modelling (GIM) to predict the relaxation response of linear, branched and cross-linked structures. This model is incorporated into a Monte Carlo percolation grid simulation used to generate the topological structure during the isothermal cure of a gel, so enabling the chemorheological response to be predicted at any point during the cure. The model results are compared to experimental data for an epoxy-amine systems and good agreement is observed. The viscoelastic model predicts the same exponent power-law behaviour of the loss and storage moduli as a function of frequency and predicts the cross-over in the loss tangent at the percolation condition for gelation. The model also predicts the peak in the loss tangent which occurs when the glass transition temperature surpasses the isothermal cure temperature and the system vitrifies.

Correlation Between Mechanical Behavior and Electrical Resistance Change in Carbon Particle Dispersed Plastic Composite

  • Song, D.Y.;Takeda, N.;Kim, J.K.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.377-382
    • /
    • 2001
  • Mechanical behavior and electrical resistance change of CPDP (carbon particle dispersed plastic) composite consisting of epoxy resin and conductive carbon particle were investigated under monotonic loading and repeated loading-unloading. The electrical resistance almost linearly increased with increasing strain during loading and the residual electrical resistance was observed even after removing load. The value of the residual electrical resistance was dependent on the maximum strain under the applied stress. This result suggests that the estimation of maximum strain (i.e., damage) is possible by the measuring electrical resistance of composite. The behavior of electrical resistance change during and after loading was discussed on the basis of the results of microscopic deformation and fracture observation. Moreover, the relationship between the volume fraction of carbon particle and the electrical resistivity of CPDP was investigated in relation to the percolation theory. Simulation model of percolation structure was established by Monte Carlo method and the simulation result was compared to the experimental results. The electrical resistance change under applied loading was analyzed quantitatively using the percolation equation and a simple model for the critical volume fraction of carbon particle as a function of the mechanical stress. It was revealed that the prediction was in good agreement with the experimental result except in the region near the failure of material.

  • PDF

Development of a Pipe Network Fluid-Flow Modelling Technique for Porous Media based on Statistical Percolation Theory (통계적 확산이론에 기초한 다공질체의 유동관망 유동해석 기법 개발)

  • Shin, Hyu-Soung
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.447-455
    • /
    • 2013
  • A micro-mechanical pipe network model with the shape of a cube was developed to simulate the behavior of fluid flow through a porous medium. The fluid-flow mechanism through the cubic pipe network channels was defined mainly by introducing a well-known percolation theory (Stauffer and Aharony, 1994). A non-uniform flow generally appeared because all of the pipe diameters were allocated individually in a stochastic manner based on a given pore-size distribution curve and porosity. Fluid was supplied to one surface of the pipe network under a certain driving pressure head and allowed to percolate through the pipe networks. A percolation condition defined by capillary pressure with respect to each pipe diameter was applied first to all of the network pipes. That is, depending on pipe diameter, the fluid may or may not penetrate a specific pipe. Once pore pressures had reached equilibrium and steady-state flow had been attained throughout the network system, Darcy's law was used to compute the resultant permeability. This study investigated the sensitivity of network size to permeability calculations in order to find out the optimum network size which would be used for all the network modelling in this study. Mean pore size and pore size distribution curve obtained from field are used to define each of pipe sizes as being representative of actual oil sites. The calculated and measured permeabilities are in good agreement.

Rigorous Modeling of Single Channel DPF Filtration and Sensitivity Analysis of Important Model Parameters (단일 채널 DPF의 PM 포집 모델링 및 모델 파라미터의 민감도 해석)

  • Jung, Seung-Chai;Park, Jong-Sun;Yoon, Woong-Sup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.127-136
    • /
    • 2006
  • Prediction of diesel particulate filtration is typically made by virtue of modeling of particulate matter(PM) collection. The model is closed with filtration parameters reflecting all small scale phenomena associated with PM trapping, and these parameters are to be traced back by inversely analyzing large-scale empirical data-the pressure drop histories. Included are soot cake permeability, soot cake density, soot density in the porous filter wall, and percolation constant. In the present study, a series of single channel DPF experiment is conducted, pressure histories are inversely analyzed, and the essential filtration parameters are deducted by DPF filtration model formulated with non-linear description of soot cake regression. Sensitivity analyses of model parameters are also made. Results showed that filtration transients are significantly altered by the extent of percolation constant, and the soot density in the porous filter wall is controlling the filtration qualities in deep-bed filtration regime. In addition, effect of soot particle size on filtration quality is distinct in a period of soot cake regime.

A Numerical Study on Coal Devolatilization of Bituminous Coal Using CPD Model

  • Kim, Ryang-Gyoon;Lee, Byoung-Hwa;Jeon, Chung-Hwan;Chang, Young-June;Song, Ju-Hun
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2898-2903
    • /
    • 2008
  • The coal considerably is the energy resource which is important with the new remarking energy resource. The coal conversion has two processes which are coal devolatilization and char oxidation. Coal devolatilization is important because it describes up to 70% weight loss and has been shown that nitrogen contribute 60 to 80% of the total NOx produced. The chemical percolation devolatilization(CPD) model is used here to describe coal devolatilization. The model was developed to describe coal devolatilization behavior of rapidly heated coal based on characteristics of the chemical structure of the parent coal. This paper describes CPD model in detail and makes an analysis of Shenhua coal(bituminous) which is used calculated 13-C NMR(carbon-nuclear magnetic resonance).

  • PDF

Effect of Random Node Distribution on the Throughput in Infrastructure-Supported Erasure Networks (인프라구조 도움을 받는 소거 네트워크에서 용량에 대한 랜덤 노드 분포의 효과)

  • Shin, Won-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.5
    • /
    • pp.911-916
    • /
    • 2016
  • The nearest-neighbor multihop routing with/without infrastructure support is known to achieve the optimal capacity scaling in a large packet-erasure network in which multiple wireless nodes and relay stations are regularly placed and packets are erased with a certain probability. In this paper, a throughput scaling law is shown for an infrastructure-supported erasure network where wireless nodes are randomly distributed, which is a more feasible scenario. We use an exponential decay model to suitably model an erasure probability. To achieve high throughput in hybrid random erasure networks, the multihop routing via highway using the percolation theory is proposed and the corresponding throughput scaling is derived. As a main result, the proposed percolation highway based routing scheme achieves the same throughput scaling as the nearest-neighbor multihop case in hybrid regular erasure networks. That is, it is shown that no performance loss occurs even when nodes are randomly distributed.

DNAPL migration in fracture networks and its remediation

  • 이항복;지성훈;여인욱;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.543-547
    • /
    • 2003
  • We applied the modified invasion percolation (MIP) model to the migration of DNAPL within a two-dimensional random fracture network. The MIP model was verified against laboratory experiments, which was conducted using a two-dimensional random fracture network model. The results showed that the MIP needs modification. To remove TCE trapped in a random fracture network, the density-surfactant-motivated removal method was applied and found very effective to remove TCE from dead-end fractures.

  • PDF

Nanoscopic Understanding of Phase Transition of Epitaxial VO2 Thin Films (에피택셜 VO2 박막의 상전이에 대한 미시적 이해)

  • Kim, Dong-Wook;Sohn, Ahrum
    • Journal of Surface Science and Engineering
    • /
    • v.50 no.3
    • /
    • pp.141-146
    • /
    • 2017
  • We investigated configuration of metallic and insulating domains in $VO_2$ thin films, while spanning metal-insulator phase transition. Kelvin probe force microscopy, of which spatial resolution is less than 100 nm, enables us to measure local work function (WF) at the sample surface. The WF of $VO_2$ thin films decreased (increased) as increasing (decreasing) the sample temperature, during the phase transition. The higher and lower WF regions corresponded to the insulating and metallic domains, respectively. The metallic fraction, estimated from the WF maps, well explained the temperature-dependent resistivity based on the percolation model. The WF mapping also showed us how the structural defects affected the phase transition behaviors.