Browse > Article

Extension of Group Interaction Modelling to predict chemorheology of curing thermosets  

Altmann, Nara (Centre for High Performance Polymers, Division of Chemical Engineering, University of Queensland)
Halley, Peter J. (Centre for High Performance Polymers, Division of Chemical Engineering, University of Queensland)
Nicholson, Timothy M. (Centre for High Performance Polymers, Division of Chemical Engineering, University of Queensland)
Publication Information
Korea-Australia Rheology Journal / v.21, no.2, 2009 , pp. 91-102 More about this Journal
Abstract
This paper describes an extension of viscoelastic Group Interaction Modelling (GIM) to predict the relaxation response of linear, branched and cross-linked structures. This model is incorporated into a Monte Carlo percolation grid simulation used to generate the topological structure during the isothermal cure of a gel, so enabling the chemorheological response to be predicted at any point during the cure. The model results are compared to experimental data for an epoxy-amine systems and good agreement is observed. The viscoelastic model predicts the same exponent power-law behaviour of the loss and storage moduli as a function of frequency and predicts the cross-over in the loss tangent at the percolation condition for gelation. The model also predicts the peak in the loss tangent which occurs when the glass transition temperature surpasses the isothermal cure temperature and the system vitrifies.
Keywords
group interaction modelling; gelation; chemorheology;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 de Gennes, P. G., 1971, Reptation of a polymer chain in the presence of fixed obstacles, J. of Chemical Physics, 55, 572-579   DOI
2 Doi, M. and S. F. Edwards, 1978, Dynamics of Concentrated Polymer Systems, Journal of the Chemical Society-Faraday Transactions Ii, 74, 1789-1832   DOI
3 Fetters, L. J., A. D. Kiss, D. S. Pearson, G. F. Quack and F. J. Vitus, 1993, Rheological Behavior of Star-Shaped Polymers, Macromolecules, 26, 647-654   DOI   ScienceOn
4 Graessley, W. W. and V. R. Raju, 1984, Some Rheological Properties of Solutions and Blends of Hydrogenated Polybutadiene, J. of Polymer Science-Polymer Symposia, 77-93
5 Gurtovenko, A. A. and Y. Y. Gotlib, 2000, Viscoelastic dynamic properties of meshlike polymer networks: Contributions of intra- and interchain relaxation processes, Macromolecules, 33, 6578-6587   DOI   ScienceOn
6 Majeste, J. C., J. P. Montfort, A. Allal and G. Marin, 1998, Viscoelasticity of low molecular weight polymers and the transition to the entangled regime, Rheologica Acta, 37, 486-499   DOI   ScienceOn
7 McLeish, T. C. B. and R. G. Larson, 1998, Molecular constitutive equations for a class of branched polymers: The pom-pom polymer, J. of Rheology, 42, 81-110   DOI   ScienceOn
8 Tackx, P. and J. Tacx, 1998, Chain architecture of LDPE as a function of molar mass using size exclusion chromatography and multi-angle laser light scattering (SEC-MALLS), Polymer, 39, 3109-3113   DOI   ScienceOn
9 Winter, H. H. and F. Chambon, 1986, Analysis of Linear Viscoelasticity of a Cross-Linking Polymer at the Gel Point, J. of Rheology, 30, 367-382   DOI   ScienceOn
10 Dotson, N. A., R. Galvan, R. L. Laurence and M. Tirrel, 1996, Polymerization Process Modeling, VCH Publishers, New York
11 Wasserman, S. H. and W. W. Graessley, 1992, Effects of polydispersity on linear viscoelasticity in entangled polymer melts, J. of Rheology, 36, 543-572   DOI
12 Ginzburg, V. V., F. Qiu and A. C. Balazs, 2002, Three-dimensional simulations of diblock copolymer/particle composites, Polymer, 43, 461-466   DOI   ScienceOn
13 Sammler, R. L. and J. L. Schrag, 1988b, Predictions of the Ability of Solution Dynamics Experiments to Characterize Long-Chain Structure in Flexible Homopolymers, Macromolecules, 21, 3273-3285   DOI   ScienceOn
14 Doi, M. and N. Y. Kuzuu, 1980, Rheology of Star Polymers in Concentrated-Solutions and Melts, J. of Polymer Science Part C-Polymer Letters, 18, 775-780   DOI
15 McLeish, T. C. B. and S. T. Milner, 1999, Entangled dynamics and melt flow of branched polymers. Branched Polymers Ii. 143: 195-256   DOI
16 Vaia, R. A. and E. P. Giannelis, 1997, Lattice model of polymer melt intercalation in organically-modified layered silicates, Macromolecules, 30, 7990-7999   DOI   ScienceOn
17 Martin, J. E., D. Adolf and J. P. Wilcoxon, 1989, Viscoelasticity near the Sol-Gel Transition, Physical Review A, 39, 1325-1332   DOI   PUBMED
18 Schausberger, A., G. Schindlauer and H. Janeschitzkriegl, 1985, Linear elastico-viscous properties of molten standard polystyrenes. 1. Presentation of complex moduli - role of shortrange structural parameters, Rheologica Acta, 24, 220-227   DOI
19 Drott, E. E. and R. A. Mendelson, 1970a, Determination of Polymer Branching with Gel-Permeation Chromatography .1. Theory, J. of Polymer Science Part a-2-Polymer Physics, 8, 1361-&   DOI
20 Sammler, R. L. and J. L. Schrag, 1988a, Bead Spring Model Predictions of Solution Dynamics for Flexible Homopolymers Incorporating Long-Chain Branches and or Rings, Macromolecules, 21, 1132-1140   DOI   ScienceOn
21 Lee, J. Y., R. B. Thompson, D. Jasnow and A. C. Balazs, 2002, Effect of nanoscopic particles on the mesophase structure of diblock copolymers, Macromolecules, 35, 4855-4858   DOI   ScienceOn
22 Martin, J. E., D. Adolf and J. P. Wilcoxon, 1988, Viscoelasticity of near-Critical Gels, Physical Review Letters, 61, 2620-2623   DOI   ScienceOn
23 Raju, V. R., G. G. Smith, G. Marin, J. R. Knox and W. W. Graessley, 1979, Properties of Amorphous and Crystallizable Hydrocarbon Polymers .1. Melt Rheology of Fractions of Linear Polyethylene, J. of Polymer Science Part B-Polymer Physics, 17, 1183-1195   DOI
24 Adolf, D. B., J. E. Martin, R. S. Chambers, S. N. Burchett and T. R. Guess, 1998, Stresses during thermoset cure, J. of Materials Research, 13, 530-550   DOI   ScienceOn
25 Pakula, T., S. Geyler, T. Edling and D. Boese, 1996, Relaxation and viscoelastic properties of complex polymer systems, Rheologica Acta, 35, 631-644   DOI   ScienceOn
26 Drott, E. E. and R. A. Mendelson, 1970b, Determination of Polymer Branching with Gel-Permeation Chromatography .2. Experimental Results for Polyethylene, J. of Polymer Science Part a-2-Polymer Physics, 8, 1373-&   DOI
27 Ferry, J., 1980, Viscoelastic properties of polymers, Wiley
28 Adolf, D., J. E. Martin and J. P. Wilcoxon, 1990, Evolution of Structure and Viscoelasticity in an Epoxy near the Sol-Gel Transition, Macromolecules, 23, 527-531   DOI
29 Bicerano, J., 1993, Prediction of Polymer Properties, Marcel Dekker, New York
30 Gurtovenko, A. A. and Y. Y. Gotlib, 1998, Intra- and interchain relaxation processes in meshlike polymer networks, Macromolecules, 31, 5756-5770   DOI   ScienceOn
31 van Krevelen, D. W., 1993, Properties of Polymers, Elseview, Amsterdam
32 Garcia-Franco, C. A., S. Srinivas, D. J. Lohse and P. Brant, 2001, Similarities between gelation and long chain branching viscoelastic behavior, Macromolecules, 34, 3115-3117   DOI   ScienceOn
33 Gurtovenko, A. A., Y. Y. Gotlib and H. G. Kilian, 2000, Viscoelastic dynamic properties of heterogeneous polymer networks with domain structure, Macromolecular Theory and Simulations, 9, 388-397   DOI   ScienceOn
34 Lim, S. K., J. W. Kim, I. Chin, Y. K. Kwon and H. J. Choi, 2002, Preparation and interaction characteristics of organically modified montmorillonite nanocomposite with miscible polymer blend of poly(ethylene oxide) and poly(methyl methacrylate), Chemistry of Materials, 14, 1989-1994   DOI   ScienceOn
35 Porter, D., 1987, Viscosity as a Consequence of Dielectric Dissipation.1. General Equation and Applications, Polymer, 28, 1051-1055   DOI   ScienceOn
36 Porter, D., 1995, Group interaction modelling of polymer properties, Marcel Dekker, New York
37 Matsuoka, S., 1992, Relaxation Phenomena in Polymers, Hansen, New York
38 Hatzikiriakos, S. G., M. Kapnistos, D. Vlassopoulos, C. Chevillard, H. H. Winter and J. Roovers, 2000, Relaxation time spectra of star polymers, Rheologica Acta, 39, 38-43   DOI   ScienceOn
39 Pattamaprom, C., R. G. Larson and T. J. Van Dyke, 2000, Quantitative predictions of linear viscoelastic rheological properties of entangled polymers, Rheologica Acta, 39, 517-531   DOI   ScienceOn
40 Altmann, N., 2002. A model for the chemorheological behaviour of thermoset polymers. University of Queensland. Brisbane, Australia
41 Robertson, C. G., C. M. Roland, C. Paulo and J. E. Puskas, 2001, Linear viscoelastic properties of hyperbranched polyisobutylene, J. of Rheology, 45, 759-772   DOI   ScienceOn
42 Wood-Adams, P. M., J. M. Dealy, A. W. deGroot and O. D. Redwine, 2000, Effect of molecular structure on the linear viscoelastic behavior of polyethylene, Macromolecules, 33, 7489-7499   DOI   ScienceOn
43 Carella, J. M., J. T. Gotro and W. W. Graessley, 1986, Thermorheological Effects of Long-Chain Branching in Entangled Polymer Melts, Macromolecules, 19, 659-667   DOI
44 Altmann, N., P. J. Halley and T. M. Nicholson, 2007, Dynamic Percolation Grid Monte Carlo Simulation, Korea-Australia Rheology J., 19, 7-16