• Title/Summary/Keyword: Peptide library

Search Result 96, Processing Time 0.03 seconds

Construction of a Hexapeptide Library using Phage Display for Bio-panning

  • Cho, Won-Hee;Yoo, Seung-Ku
    • Journal of Microbiology
    • /
    • v.37 no.2
    • /
    • pp.97-101
    • /
    • 1999
  • Random hexapeptide library on the surface of filamentous bacteriophage was constructed using the SurfZAP vector. The size of the library was approximately 105. The peptide insert was flanked by two cysteines to constrain the peptide structure with a disulfide bond. This library was screened for the topoisomerase II binding peptide. Dramatic enrichment of the fusion phage over the VCS M13 helper phage was demonstrated by bio-panning affinity selection.

  • PDF

Combinatorial Solid Phase Peptide Synthesis and Bioassays

  • Shin, Dong-Sik;Kim, Do-Hyun;Chung, Woo-Jae;Lee, Yoon-Sik
    • BMB Reports
    • /
    • v.38 no.5
    • /
    • pp.517-525
    • /
    • 2005
  • Solid phase peptide synthesis method, which was introduced by Merrifield in 1963, has spawned the concept of combinatorial chemistry. In this review, we summarize the present technologies of solid phase peptide synthesis (SPPS) that are related to combinatorial chemistry. The conventional methods of peptide library synthesis on polymer support are parallel synthesis, split and mix synthesis and reagent mixture synthesis. Combining surface chemistry with the recent technology of microelectronic semiconductor fabrication system, the peptide microarray synthesis methods on a planar solid support are developed, which leads to spatially addressable peptide library. There are two kinds of peptide microarray synthesis methodologies: pre-synthesized peptide immobilization onto a glass or membrane substrate and in situ peptide synthesis by a photolithography or the SPOT method. This review also discusses the application of peptide libraries for high-throughput bioassays, for example, peptide ligand screening for antibody or cell signaling, enzyme substrate and inhibitor screening as well as other applications.

Screening Peptides Binding Specifically to Colorectal Cancer Cells from a Phage Random Peptide Library

  • Wang, Jun-Jiang;Liu, Ying;Zheng, Yang;Liao, Kang-Xiong;Lin, Feng;Wu, Cheng-Tang;Cai, Guan-Fu;Yao, Xue-Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.1
    • /
    • pp.377-381
    • /
    • 2012
  • The aim of this study was to screen for polypeptides binding specifically to LoVo human colorectal cancer cells using a phage-displayed peptide library as a targeting vector for colorectal cancer therapy. Human normal colorectal mucous epithelial cells were applied as absorber cells for subtraction biopanning with a c7c phage display peptide library. Positive phage clones were identified by enzyme-linked immunosorbent assay and immunofluorescence detection; amino acid sequences were deduced by DNA sequencing. After 3 rounds of screening, 5 of 20 phage clones screened positive, showing specific binding to LoVo cells and a conserved RPM motif. Specific peptides against colorectal cancer cells could be obtained from a phage display peptide library and may be used as potential vectors for targeting therapy for colorectal cancer.

Definition of the peptide mimotope of cellular receptor for hepatitis C virus E2 protein using random peptide library (Random peptide library를 이용한 C형 간염바이러스 E2 단백질 세포막 수용체의 peptide mimotope 규명)

  • Lee, In-Hee;Paik, Jae-Eun;Seol, Sang-Yong;Seog, Dae-Hyun;Park, Sae-Gwang;Choi, In-Hak
    • IMMUNE NETWORK
    • /
    • v.1 no.1
    • /
    • pp.77-86
    • /
    • 2001
  • Background: Hepatitis C virus(HCV), a family of Flaviviridae, has a host cell-derived envelope containing a positive-stranded RNA genome, and has been known as the maj or etiological agent for chronic hepatitis, hepatic cirrhosis, and hepatocellular carcinoma. There remains a need to dissect a molecular mechanism of pathogenesis for the development of therapeutic and effective preventive measure for HCV. Identification of cellular receptor is of central importance not only to understand the viral pathogenesis, but also to exploit strategies for prevention of HCV. This study was aimed at identifying peptide mimotopes inhibiting the binding of E2 protein of HCV to MOLT-4 cell. Methods: In this study, phage peptide library displaying a random peptides consisting of 7 or 12 random peptides was employed in order to pan against E2 protein. Free HCV particles were separated from the immune complex forms by immunoprecipitation using anti-human IgG antibody, and used for HCV-capture ELISA. To identify the peptides inhibiting E2-binding to MOLT-4 cells, E2 protein was subj ect to bind to MOLT-4 cells under the competition with phage peptides. Results: Several phage peptides were selected for their specific binding to E2 protein, which showed the conserved sequence of SHFWRAP from 3 different peptide sequences. They were also able to recognize the HCV particles in the sera of HCV patients captured by monoclonal antibody against E2 protein. Two of them, showing peptide sequence of HLGPWMSHWFQR and WAPPLERSSLFY respectively, were revealed to inhibit the binding of E2 protein to MOLT-4 cell efficiently in dose dependent mode. However, few membrane-associated receptor candidates were seen using Fasta3 programe for homology search with these peptides. Conclusion: Phage peptides containing HLGPWMSHWFQR and WAPPLERSSLFY respectively, showed the inhibition of E2-binding to MOLT-4 cells. However, they did not reveal any homologues to cellular receptors from GenBank database. In further study, cellular receptor could be identified through the screening of cDNA library from MOLT-4 or hepatocytes using antibodies against these peptide mimotopes.

  • PDF

Identification of a Transferrin Receptor-binding Peptide from a Phage-displayed Peptide Library (파지-펩타이드 문고로부터 트랜스페린 수용체에 결합하는 펩타이드 탐색)

  • Kim, Sung-Il;Choi, Suk-Jung
    • Journal of Life Science
    • /
    • v.18 no.3
    • /
    • pp.298-303
    • /
    • 2008
  • Using a phage peptide library approach, we have isolated a peptide ligand that binds to transferrin receptor on the surface of human melanoma cell, B16F10. The library was first screened twice by recovering internalized phages and was further screened three times by competitively eluting transferrin receptor-specific phages with human transferrin among the phages bound to the cell surface. The peptides displayed by the selected phages were fused to translocation and catalytic domain of Pseudomonas exotoxin to prepare recombinant toxins. After estimating cytotoxicity of each recombinant toxin toward B16F10 cell, seven clones were selected. Sequence analysis revealed that one of the clones displayed a peptide which had a significant sequence homology with human transferrin. The peptide was chemically synthesized and was shown to be functional in delivering cytotoxic agents into B16F10 cell via interaction with transferrin receptor.

Characterization of a Phage Library Displaying Random 22mer Peptides

  • Lee, Seung-Joo;Lee, Jeong-Hwan;Kay, Brian K.;Dreyfuss, Gideon;Park, Yong-Keun;Kim, Jeong-Kook
    • Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.347-353
    • /
    • 1997
  • We have characterized a phage library displaying random 22mer peptides which were produced as N-terminal fusions to the pIII coat protein of M13 filamentous phages. Among the sixty phages randomly picked from the library, 25 phages had the 22mer peptide inserts. The DNA sequence analysis of the 25 inserts showed the following results: first, each nucleotide was represented almost equally at each codon position except that there were some biases toward G bases at the first position of the codons. Secondly, the expected 47 sense codons were represented. The deduced amino acid sequences of the 25 inserts were analyzed to examine its diversity. Glycine and glutamate were the two most overrepresented residues above the expected value, whereas cysteine and threonine residues were underrepresented. The range of dicersity in dipeptide sequences showed that the amino acid residues were randomly distributed along the peptide insert. Acidic, basic, polar, and nonpolar amino acid residues were represented to the extent expected at most positions of the peptide inserts. The predicted isoelectric points and hydropathy indices of the 25 peptides showed that a variety of the peptide were represented in the library. These results indicate that this phage display library could be useful in fiuding ligands for a broad spectrum of receptors by affinity screening.

  • PDF

Surface Modification of Glass Chip for Peptide Microarray (펩타이드 Microarray를 위한 유리 칩의 표면 개질)

  • Cho, Hyung-Min;Lim, Chang-Hwan;Neff, Silke;Jungbauer, Alois;Lee, Eun-Kyu
    • KSBB Journal
    • /
    • v.22 no.4
    • /
    • pp.260-264
    • /
    • 2007
  • Peptides are frequently studied as candidates for new drug development. Recently, synthesized peptide library is screened for a certain functionality on a microarray biochip format. In this study, in order to replace the conventional cellulose membrane with glass for a microarray chip substrate for peptide library screening, we modified the glass surface from amines to thiols and covalently immobilized the peptides. Using trypsin-FITC (fluorescein isothiocyanate) conjugate that could specifically bind to a trypsin binding domain consisting of a 7-amino acid peptide, we checked the degree of surface modification. Because of the relatively lower hydrophilicity and reduced surface roughness, the conjugation reaction to the glass required a longer reaction time and a higher temperature. It took approximately 12 hr for the reaction to be completed. From the fluorescence signal intensity, we could differentiate between the target and the control peptides. This difference was confirmed by a separate experiment using QCM. Furthermore, a smaller volume and higher concentration of a spot showed a higher fluorescence intensity. These data would provide the basic conditions for the development of microarray peptide biochips.

Identification of a Deoxyribonuclease I Inhibitor from a Phage-Peptide Library

  • Choi, Suk-Jung;Sperinde, Jeffrey J.;Szoka, Francis C. Jr.
    • Molecules and Cells
    • /
    • v.19 no.1
    • /
    • pp.54-59
    • /
    • 2005
  • Deoxyribonuclease I (DNase I) is a divalent cation dependent endonuclease and thought to be a significant barrier to effective gene delivery. The only known DNase I-specific inhibitor is monomeric actin which acts by forming a 1:1 complex with DNase I. Its use, however, is restricted because of tendency to polymerize under certain conditions. We screened two random phage peptide libraries of complexity $10^8$ and $10^9$ for DNase I binders as candidates for DNase I inhibitors. A number of DNase I-binding peptide sequences were identified. When these peptides were expressed as fusion proteins with Escherichia coli maltose binding protein, they inhibited the actin-DNase I interaction ($IC_{50}=0.1-0.7{\mu}M$) and DNA degradation by DNase I ($IC_{50}=0.8-8{\mu}M$). Plasmid protection activity in the presence of DNase I was also observed with the fusion proteins. These peptides have the potential to be a useful adjuvant for gene therapy using naked DNA.

Identification of Antimicrobial Peptide Hexamers against Oral Pathogens through Rapid Screening of a Synthetic Combinatorial Peptide Library

  • Song, Je-Seon;Cho, Kyung Joo;Kim, Joungmok;Kim, Jeong Hee
    • International Journal of Oral Biology
    • /
    • v.39 no.4
    • /
    • pp.169-176
    • /
    • 2014
  • A positional scanning synthetic peptide combinatorial library (PS-SCL) was screened in order to identify antimicrobial peptides against the cariogenic oral bacteria, Streptococcus mutans. Activity against Streptococcus gordonii and Aggregatibacter actinomycetemcomitans was also examined. The library was comprised of six sub-libraries with the format $O_{(1-6)}XXXXX-NH_2$, where O represents one of 19 amino acids (excluding cysteine) and X represents equimolar mixture of these. Each sub-library was tested for antimicrobial activity against S. mutans and evaluated for antimicrobial activity against S. gordonii and A. actinomycetemcomitans. The effect of peptides was observed using transmission electron microscopy (TEM). Two semi-mixture peptides, RXXXXN-$NH_2$ (pep-1) and WXXXXN-$NH_2$ (pep-2), and one positioned peptide, RRRWRN-$NH_2$ (pep-3), were identified. Pep-1 and pep-2 showed significant antimicrobial activity against Gram positive bacteria (S. mutans and S. gordonii), but not against Gram negative bacteria (A. actinomycetemcomitans). However, pep-3 showed very low antimicrobial activity against all three bacteria. Pep-3 did not form an amphiphilic ${\alpha}$-helix, which is a required structure for most antimicrobial peptides. Pep-1 and pep-2 were able to disrupt the membrane of S. mutans. Small libraries of biochemically-constrained peptides can be used to generate antimicrobial peptides against S. mutans and other oral microbes. Peptides derived from such libraries may be candidate antimicrobial agents for the treatment of oral microorganisms.

Expression of an Angiogenin Binding Peptide and Its Anti-Angiogenic Activity

  • Choi, Suk-Jung;Ahn, Mi-Won;Yoon, Kyoung-Bum;Park, Jong-Won
    • BMB Reports
    • /
    • v.31 no.5
    • /
    • pp.427-431
    • /
    • 1998
  • In the previous report (Choi et al., 1997), the angiogenin binding peptides identified from a phage-peptide library were analyzed by using the fusion proteins composed of the Escherichia coli maltose binding protein and its corresponding peptides. However, it was difficult to obtain a sufficient amount of the fusion proteins required for further analysis because of the low expression level. We now report a high level expression of the fusion protein and analysis of its anti-angiogenin activity. The use of strong T7 promoter and removal of signal sequence allowed about a 20-fold increase in the expression efficiency of the fusion protein. We were able to obtain about 10 mg of purified fusion protein from one liter of culture. The purified fusion protein showed angiogenin-specific affinity and inhibited the binding of biotinylated actin to human angiogenin at $IC_{50}$ of 0.6 mM. Its anti-angiogenin activity was also revealed by the chorioallantoic membrane assay.

  • PDF